2 resultados para Flink, Toivo

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo di questo l'elaborato è l'analisi,lo studio e il confronto delle tecnologie per l'analisi in tempo reale di Big Data: Apache Spark Streaming, Apache Storm e Apache Flink. Per eseguire un adeguato confronto si è deciso di realizzare un sistema di rilevamento e riconoscimento facciale all’interno di un video, in maniera da poter parallelizzare le elaborazioni necessarie sfruttando le potenzialità di ogni architettura. Dopo aver realizzato dei prototipi realistici, uno per ogni architettura, si è passati alla fase di testing per misurarne le prestazioni. Attraverso l’impiego di cluster appositamente realizzati in ambiente locale e cloud, sono state misurare le caratteristiche che rappresentavano, meglio di altre, le differenze tra le architetture, cercando di dimostrarne quantitativamente l’efficacia degli algoritmi utilizzati e l’efficienza delle stesse. Si è scelto quindi il massimo input rate sostenibile e la latenza misurate al variare del numero di nodi. In questo modo era possibile osservare la scalabilità di architettura, per analizzarne l’andamento e verificare fino a che limite si potesse giungere per mantenere un compromesso accettabile tra il numero di nodi e l’input rate sostenibile. Gli esperimenti effettuati hanno mostrato che, all’aumentare del numero di worker le prestazioni del sistema migliorano, rendendo i sistemi studiati adatti all’utilizzo su larga scala. Inoltre sono state rilevate sostanziali differenze tra i vari framework, riportando pro e contro di ognuno, cercando di evidenziarne i più idonei al caso di studio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’elaborazione di quantità di dati sempre crescente ed in tempi ragionevoli è una delle principali sfide tecnologiche del momento. La difficoltà non risiede esclusivamente nel disporre di motori di elaborazione efficienti e in grado di eseguire la computazione coordinata su un’enorme mole di dati, ma anche nel fornire agli sviluppatori di tali applicazioni strumenti di sviluppo che risultino intuitivi nell’utilizzo e facili nella messa in opera, con lo scopo di ridurre il tempo necessario a realizzare concretamente un’idea di applicazione e abbassare le barriere all’ingresso degli strumenti software disponibili. Questo lavoro di tesi prende in esame il progetto RAM3S, il cui intento è quello di semplificare la realizzazione di applicazioni di elaborazione dati basate su piattaforme di Stream Processing quali Spark, Storm, Flinke e Samza, e si occupa di esaudire il suo scopo originale fornendo un framework astratto ed estensibile per la definizione di applicazioni di stream processing, capaci di eseguire indistintamente sulle piattaforme disponibili sul mercato.