2 resultados para Financial Market

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli anni la funzione dei social network è cambiata molte volte. Alle origini i social network erano uno strumento di connessione tra amici, ora sono siti internet in cui le persone mettono informazioni e quando un social network ha milioni di utenti, diventa un’incredibile sorgente di dati. Twitter è uno dei siti internet più visitati, e viene descritto come “the SMS of internet”, perchè è un social network che permette ai suoi utenti di inviare e leggere messaggi corti, di 140 caratteri, chiamati “tweets”. Con il passare del tempo Twitter `e diventato una fonte fondamentale di notizie. Il suo grande numero di utenti permette alle notizie di espandersi nella rete in modo virale. Molte persone hanno cercato di analizzare il potere dei tweet, come il contenuto positivo o negativo, mentre altri hanno cercato di capire se avessero un potere predittivo. In particolare nel mondo finanziario, sono state avviate molte ricerche per verificare l’esistenza di una effettiva correlazione tra i tweets e la fluttuazione del mercato azionario. L’effettiva presenza di tale relazione unita a un modello predittivo, potrebbe portare allo sviluppo di un modello che analizzando i tweets presenti nella rete, relativi a un titolo azionario, dia informazioni sulle future variazioni del titolo stesso. La nostra attenzione si è rivolata alla ricerca e validazione statistica di tale correlazione. Sono stati effettuati test su singole azioni, sulla base dei dati disponibili, poi estesi a tutto il dataset per vedere la tendenza generale e attribuire maggior valore al risultato. Questa ricerca è caratterizzata dal suo dataset di tweet che analizza un periodo di oltre 2 anni, uno dei periodi più lunghi mai analizzati. Si è cercato di fornire maggior valore ai risultati trovati tramite l’utilizzo di validazioni statistiche, come il “permutation test”, per validare la relazione tra tweets di un titolo con i relativi valori azionari, la rimozione di una percentuale di eventi importanti, per mostrare la dipendenza o indipendenza dei dati dagli eventi più evidenti dell’anno e il “granger causality test”, per capire la direzione di una previsione tra serie. Sono stati effettuati anche test con risultati fallimentari, dai quali si sono ricavate le direzioni per i futuri sviluppi di questa ricerca.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is focused on the financial model for interest rates called the LIBOR Market Model. In the appendixes, we provide the necessary mathematical theory. In the inner chapters, firstly, we define the main interest rates and financial instruments concerning with the interest rate models, then, we set the LIBOR market model, demonstrate its existence, derive the dynamics of forward LIBOR rates and justify the pricing of caps according to the Black’s formula. Then, we also present the Swap Market Model, which models the forward swap rates instead of the LIBOR ones. Even this model is justified by a theoretical demonstration and the resulting formula to price the swaptions coincides with the Black’s one. However, the two models are not compatible from a theoretical point. Therefore, we derive various analytical approximating formulae to price the swaptions in the LIBOR market model and we explain how to perform a Monte Carlo simulation. Finally, we present the calibration of the LIBOR market model to the markets of both caps and swaptions, together with various examples of application to the historical correlation matrix and the cascade calibration of the forward volatilities to the matrix of implied swaption volatilities provided by the market.