3 resultados para Film-forming material

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2) is a powerful oxidant which is commonly used in a wide range of applications in the industrial field. Several methods for the quantification of H2O2 have been developed. Among them, electrochemical methods exploit the ability of some hexacyanoferrates (such as Prussian Blue) to detect H2O2 at potentials close to 0.0 V (vs. SCE) avoiding the occurrence of secondary reactions, which are likely to run at large overpotentials. This electrocatalytic behaviour makes hexacyanoferrates excellent redox mediators. When deposited in the form of thin films on the electrode surfaces, they can be employed in the fabrication of sensors and biosensors, normally operated in solutions at pH values close to physiological ones. As hexacyanoferrates show limited stability in not strongly acidic solutions, it is necessary to improve the configuration of the modified electrodes to increase the stability of the films. In this thesis work, organic conducting polymers were used to fabricate composite films with Prussian Blue (PB) to be electro-deposited on Pt surfaces, in order to increase their pH stability. Different electrode configurations and different methods of synthesis of both components were tested, and for each one the achievement of a possible increase in the operational stability of Prussian Blue was verified. Good results were obtained for the polymer 3,3''-didodecyl-2,2':5',2''-terthiophene (poly(3,3''-DDTT)), whose presence created a favourable microenvironment for the electrodeposition of Prussian Blue. The electrochemical behaviour of the modified electrodes was studied in both aqueous and organic solutions. Poly(3,3''-DDTT) showed no response in aqueous solution in the potential range where PB is electroactive, thus in buffered aqueous solution is was possible to characterize the composite material, focusing only on the redox behaviour of PB. A combined effect of anion and cation of the supporting electrolyte was noticed. The response of Pt electrodes modified with films of the PB /poly(3,3''-DDTT) composite was evaluated for the determination of H2O2. The performance of such films was found better than that of the PB alone. It can be concluded that poly(3,3''-DDTT) plays a key role in the stabilization of Prussian Blue causing also a wider linearity range for the electrocatalytic response to H2O2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most diffused electronic device is the field effect transistor (FET), contained in number of billions in each electronic device. Organic optoelectronics is an emerging field that exploits the unique properties of conjugated organic materials to develop new applications that require a combination of performance, low cost and processability. Organic single crystals are the material with best performances and purity among the variety of different form of organic semiconductors. This thesis is focused on electrical and optical characterization of Rubrene single crystal bulk and thin films. Rubrene bulk is well known but for the first time we studied thin films. The first Current-voltage characterization has been performed for the first time on three Rubrene thin films with three different thickness to extract the charge carriers mobility and to assess its crystalline structure. As results we see that mobility increase with thickness. Field effect transistor based on Rubrene thin films on $SiO_2$ have been characterize by current-voltage (I-V) analyses (at several temperatures) and reveals a hopping conduction. Hopping behavior probably is due to the lattice mismatch with the substrate or intrinsic defectivity of the thin films. To understand effects of contact resistance we tested thin films with the Transmission Line Method (TLM) method. The TLM method revealeds that contact resistance is negligible but evidenced a Schottky behavior in a limited but well determined range of T. To avoid this effect we carried out annealing treatment after the electrode evaporation iswe performed a compete I-V characterization as a function of in temperature to extract the electronic density of states (DOS) distribution through the Space Charge Limited Current (SCLC) method. The results show a DOS with an exponential trenddistribution, as expected. The measured mobility of thin films is about 0.1cm^2/Vs and it increases with the film thickness. Further studies are necessary to investigate the reason and improve performances. From photocurrent spectrum we calculated an Eg of about 2.2eV and both thin films and bulk have a good crystal order. Further measurement are necessary to solve some open problems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A really particular and innovative metal-polymer sandwich material is Hybrix. Hybrix is a product developed and manufactured by Lamera AB, Gothenburg, Sweden. This innovative hybrid material is composed by two relatively thin metal layers if compared to the core thickness. The most used metals are aluminum and stainless steel and are separated by a core of nylon fibres oriented perpendicularly to the metal plates. The core is then completed by adhesive layers applied at the PA66-metal interface that once cured maintain the nylon fibres in position. This special material is very light and formable. Moreover Hybrix, depending on the specific metal which is used, can achieve a good corrosion resistance and it can be cut and punched easily. Hybrix architecture itself provides extremely good bending stiffness, damping properties, insulation capability, etc., which again, of course, change in magnitude depending in the metal alloy which is used, its thickness and core thickness. For these reasons nowadays it shows potential for all the applications which have the above mentioned characteristic as a requirement. Finally Hybrix can be processed with tools used in regular metal sheet industry and can be handled as solid metal sheets. In this master thesis project, pre-formed parts of Hybrix were studied and characterized. Previous work on Hybrix was focused on analyze its market potential and different adhesive to be used in the core. All the tests were carried out on flat unformed specimens. However, in order to have a complete description of this material also the effect of the forming process must be taken into account. Thus the main activities of the present master thesis are the following: Dynamic Mechanical-Thermal Analysis (DMTA) on unformed Hybrix samples of different thickness and on pre-strained Hybrix samples, pure epoxy adhesive samples analysis and finally moisture effects evaluation on Hybrix composite structure.