3 resultados para Feynman, Richard P

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Normalmente la meccanica quantistica non relativistica è ricavata a partire dal fatto che una particella al tempo t non può essere descritta da una posizione $x$ definita, ma piuttosto è descritta da una funzione, chiamata funzione d'onda, per cui vale l'equazione differenziale di Schr\"odinger, e il cui modulo quadro in $x$ viene interpretato come la probabilità di rilevare la particella in tale posizione. Quindi grazie all'equazione di Schr\"odinger si studia la dinamica della funzione d'onda, la sua evoluzione temporale. Seguendo quest'approccio bisogna quindi abbandonare il concetto classico di traiettoria di una particella, piuttosto quello che si studia è la "traiettoria" della funzione d'onda nei vari casi di campi di forze che agiscono sulla particella. In questa tesi si è invece scelto di studiare un approccio diverso, ma anch'esso efficace nel descrivere i fenomeni della meccanica quantistica non relativistica, formulato per la prima volta negli anni '50 del secolo scorso dal dott. Richard P. Feynman. Tale approccio consiste nel considerare una particella rilevata in posizione $x_a$ nell'istante $t_a$, e studiarne la probabilità che questa ha, nelle varie configurazioni dei campi di forze in azione, di giungere alla posizione $x_b$ ad un successivo istante $t_b$. Per farlo si associa ad ogni percorso che congiunge questi due punti spazio-temporali $a$ e $b$ una quantità chiamata ampiezza di probabilità del percorso, e si sviluppa una tecnica che permette di sommare le ampiezze relative a tutti gli infiniti cammini possibili che portano da $a$ a $b$, ovvero si integra su tutte le traiettorie $x(t)$, questo tipo di integrale viene chiamato integrale di cammino o più comunemente path integral. Il modulo quadro di tale quantità darà la probabilità che la particella rilevata in $a$ verrà poi rilevata in $b$.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The LHCb experiment has been designed to perform precision measurements in the flavour physics sector at the Large Hadron Collider (LHC) located at CERN. After the recent observation of CP violation in the decay of the Bs0 meson to a charged pion-kaon pair at LHCb, it is interesting to see whether the same quark-level transition in Λ0b baryon decays gives rise to large CP-violating effects. Such decay processes involve both tree and penguin Feynman diagrams and could be sensitive probes for physics beyond the Standard Model. The measurement of the CP-violating observable defined as ∆ACP = ACP(Λ0b → pK−)−ACP(Λ0b →pπ−),where ACP(Λ0b →pK−) and ACP(Λ0b →pπ−) are the direct CP asymmetries in Λ0b → pK− and Λ0b → pπ− decays, is presented for the first time using LHCb data. The procedure followed to optimize the event selection, to calibrate particle identification, to parametrise the various components of the invariant mass spectra, and to compute corrections due to the production asymmetry of the initial state and the detection asymmetries of the final states, is discussed in detail. Using the full 2011 and 2012 data sets of pp collisions collected with the LHCb detector, corresponding to an integrated luminosity of about 3 fb−1, the value ∆ACP = (0.8 ± 2.1 ± 0.2)% is obtained. The first uncertainty is statistical and the second corresponds to one of the dominant systematic effects. As the result is compatible with zero, no evidence of CP violation is found. This is the most precise measurement of CP violation in the decays of baryons containing the b quark to date. Once the analysis will be completed with an exhaustive study of systematic uncertainties, the results will be published by the LHCb Collaboration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of Feynman integrals into a basis of independent master integrals is an essential ingredient of high-precision theoretical predictions, that often represents a major bottleneck when processes with a high number of loops and legs are involved. In this thesis we present a new algorithm for the decomposition of Feynman integrals into master integrals with the formalism of intersection theory. Intersection theory is a novel approach that allows to decompose Feynman integrals into master integrals via projections, based on a scalar product between Feynman integrals called intersection number. We propose a new purely rational algorithm for the calculation of intersection numbers of differential $n-$forms that avoids the presence of algebraic extensions. We show how expansions around non-rational poles, which are a bottleneck of existing algorithms for intersection numbers, can be avoided by performing an expansion in series around a rational polynomial irreducible over $\mathbb{Q}$, that we refer to as $p(z)-$adic expansion. The algorithm we developed has been implemented and tested on several diagrams, both at one and two loops.