2 resultados para Features extraction

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dato il recente avvento delle tecnologie NGS, in grado di sequenziare interi genomi umani in tempi e costi ridotti, la capacità di estrarre informazioni dai dati ha un ruolo fondamentale per lo sviluppo della ricerca. Attualmente i problemi computazionali connessi a tali analisi rientrano nel topic dei Big Data, con databases contenenti svariati tipi di dati sperimentali di dimensione sempre più ampia. Questo lavoro di tesi si occupa dell'implementazione e del benchmarking dell'algoritmo QDANet PRO, sviluppato dal gruppo di Biofisica dell'Università di Bologna: il metodo consente l'elaborazione di dati ad alta dimensionalità per l'estrazione di una Signature a bassa dimensionalità di features con un'elevata performance di classificazione, mediante una pipeline d'analisi che comprende algoritmi di dimensionality reduction. Il metodo è generalizzabile anche all'analisi di dati non biologici, ma caratterizzati comunque da un elevato volume e complessità, fattori tipici dei Big Data. L'algoritmo QDANet PRO, valutando la performance di tutte le possibili coppie di features, ne stima il potere discriminante utilizzando un Naive Bayes Quadratic Classifier per poi determinarne il ranking. Una volta selezionata una soglia di performance, viene costruito un network delle features, da cui vengono determinate le componenti connesse. Ogni sottografo viene analizzato separatamente e ridotto mediante metodi basati sulla teoria dei networks fino all'estrapolazione della Signature finale. Il metodo, già precedentemente testato su alcuni datasets disponibili al gruppo di ricerca con riscontri positivi, è stato messo a confronto con i risultati ottenuti su databases omici disponibili in letteratura, i quali costituiscono un riferimento nel settore, e con algoritmi già esistenti che svolgono simili compiti. Per la riduzione dei tempi computazionali l'algoritmo è stato implementato in linguaggio C++ su HPC, con la parallelizzazione mediante librerie OpenMP delle parti più critiche.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this thesis project is to automatically localize HCC tumors in the human liver and subsequently predict if the tumor will undergo microvascular infiltration (MVI), the initial stage of metastasis development. The input data for the work have been partially supplied by Sant'Orsola Hospital and partially downloaded from online medical databases. Two Unet models have been implemented for the automatic segmentation of the livers and the HCC malignancies within it. The segmentation models have been evaluated with the Intersection-over-Union and the Dice Coefficient metrics. The outcomes obtained for the liver automatic segmentation are quite good (IOU = 0.82; DC = 0.35); the outcomes obtained for the tumor automatic segmentation (IOU = 0.35; DC = 0.46) are, instead, affected by some limitations: it can be state that the algorithm is almost always able to detect the location of the tumor, but it tends to underestimate its dimensions. The purpose is to achieve the CT images of the HCC tumors, necessary for features extraction. The 14 Haralick features calculated from the 3D-GLCM, the 120 Radiomic features and the patients' clinical information are collected to build a dataset of 153 features. Now, the goal is to build a model able to discriminate, based on the features given, the tumors that will undergo MVI and those that will not. This task can be seen as a classification problem: each tumor needs to be classified either as “MVI positive” or “MVI negative”. Techniques for features selection are implemented to identify the most descriptive features for the problem at hand and then, a set of classification models are trained and compared. Among all, the models with the best performances (around 80-84% ± 8-15%) result to be the XGBoost Classifier, the SDG Classifier and the Logist Regression models (without penalization and with Lasso, Ridge or Elastic Net penalization).