4 resultados para Feature selection algorithm
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Antarctic cloud spectral emission from ground-based measurements, a focus on far infrared signatures
Resumo:
The present work belongs to the PRANA project, the first extensive field campaign of observation of atmospheric emission spectra covering the Far InfraRed spectral region, for more than two years. The principal deployed instrument is REFIR-PAD, a Fourier transform spectrometer used by us to study Antarctic cloud properties. A dataset covering the whole 2013 has been analyzed and, firstly, a selection of good quality spectra is performed, using, as thresholds, radiance values in few chosen spectral regions. These spectra are described in a synthetic way averaging radiances in selected intervals, converting them into BTs and finally considering the differences between each pair of them. A supervised feature selection algorithm is implemented with the purpose to select the features really informative about the presence, the phase and the type of cloud. Hence, training and test sets are collected, by means of Lidar quick-looks. The supervised classification step of the overall monthly datasets is performed using a SVM. On the base of this classification and with the help of Lidar observations, 29 non-precipitating ice cloud case studies are selected. A single spectrum, or at most an average over two or three spectra, is processed by means of the retrieval algorithm RT-RET, exploiting some main IR window channels, in order to extract cloud properties. Retrieved effective radii and optical depths are analyzed, to compare them with literature studies and to evaluate possible seasonal trends. Finally, retrieval output atmospheric profiles are used as inputs for simulations, assuming two different crystal habits, with the aim to examine our ability to reproduce radiances in the FIR. Substantial mis-estimations are found for FIR micro-windows: a high variability is observed in the spectral pattern of simulation deviations from measured spectra and an effort to link these deviations to cloud parameters has been performed.
Resumo:
Nowadays communication is switching from a centralized scenario, where communication media like newspapers, radio, TV programs produce information and people are just consumers, to a completely different decentralized scenario, where everyone is potentially an information producer through the use of social networks, blogs, forums that allow a real-time worldwide information exchange. These new instruments, as a result of their widespread diffusion, have started playing an important socio-economic role. They are the most used communication media and, as a consequence, they constitute the main source of information enterprises, political parties and other organizations can rely on. Analyzing data stored in servers all over the world is feasible by means of Text Mining techniques like Sentiment Analysis, which aims to extract opinions from huge amount of unstructured texts. This could lead to determine, for instance, the user satisfaction degree about products, services, politicians and so on. In this context, this dissertation presents new Document Sentiment Classification methods based on the mathematical theory of Markov Chains. All these approaches bank on a Markov Chain based model, which is language independent and whose killing features are simplicity and generality, which make it interesting with respect to previous sophisticated techniques. Every discussed technique has been tested in both Single-Domain and Cross-Domain Sentiment Classification areas, comparing performance with those of other two previous works. The performed analysis shows that some of the examined algorithms produce results comparable with the best methods in literature, with reference to both single-domain and cross-domain tasks, in $2$-classes (i.e. positive and negative) Document Sentiment Classification. However, there is still room for improvement, because this work also shows the way to walk in order to enhance performance, that is, a good novel feature selection process would be enough to outperform the state of the art. Furthermore, since some of the proposed approaches show promising results in $2$-classes Single-Domain Sentiment Classification, another future work will regard validating these results also in tasks with more than $2$ classes.
Resumo:
In this work we focus on pattern recognition methods related to EMG upper-limb prosthetic control. After giving a detailed review of the most widely used classification methods, we propose a new classification approach. It comes as a result of comparison in the Fourier analysis between able-bodied and trans-radial amputee subjects. We thus suggest a different classification method which considers each surface electrodes contribute separately, together with five time domain features, obtaining an average classification accuracy equals to 75% on a sample of trans-radial amputees. We propose an automatic feature selection procedure as a minimization problem in order to improve the method and its robustness.
Resumo:
This thesis focuses on finding the optimum block cutting dimensions in terms of the environmental and economic factors by using a 3D algorithm for a limestone quarry in Foggia, Italy. The environmental concerns of quarrying operations are mainly: energy consumption, material waste, and pollution. The main economic concerns are the block recovery, the selling prices, and the production costs. Fractures adversely affect the block recovery ratio. With a fracture model, block production can be optimized. In this research, the waste volume produced by quarrying was minimised to increase the recovery ratio and ensure economic benefits. SlabCutOpt is a software developed at DICAM–University of Bologna for block cutting optimization which tests different cutting angles on the x-y-z planes to offer up alternative cutting methods. The program tests several block sizes and outputs the optimal result for each entry. By using SlabCutOpt, ten different block dimensions were analysed, the results indicated the maximum number of non-intersecting blocks for each dimension. After analysing the outputs, the block named number 1 with the dimensions ‘1mx1mx1m’ had the highest recovery ratio as 43% and the total Relative Money Value (RMV) with a value of 22829. Dimension number 1, also had the lowest waste volume, with a value of 3953.25 m3, for the total bench. For cutting the total bench volume of 6932.25m3, the diamond wire cutter had the lowest dust emission values for the block with the dimension ‘2mx2mx2m’, with a value of 24m3. When compared with the Eco-Label standards, block dimensions having surface area values lower than 15m2, were found to fit the natural resource waste criteria of the label, as the threshold required 25% of minimum recovery [1]. Due to the relativity of production costs, together with the Eco-Label threshold, the research recommends the selection of the blocks with a surface area value between 6m2 and 14m2.