5 resultados para Fault detection and diagnostics
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questo lavoro di tesi si affronta una delle problematiche che si presentano oggi nell'impiego degli APR (Aeromobili a Pilotaggio Remoto): la gestione della safety. Non si può più, in altri termini, negare che tali oggetti siano parte integrante dello spazio aereo civile. Proprio su questo tema recentemente gli enti regolatori dello spazio aereo stanno proiettando i loro sforzi al fine di stabilire una serie di regolamenti che disciplinino da una parte le modalità con cui questi oggetti si interfacciano con le altre categorie di velivoli e dall'altra i criteri di idoneità perché anche essi possano operare nello spazio aereo in maniera sicura. Si rende quindi necessario, in tal senso, dotare essi stessi di un sufficiente grado di sicurezza che permetta di evitare eventi disastrosi nel momento in cui si presenta un guasto nel sistema; è questa la definizione di un sistema fail-safe. Lo studio e lo sviluppo di questa tipologia di sistemi può aiutare il costruttore a superare la barriera oggi rappresentata dal regolamento che spesso e volentieri rappresenta l'unico ostacolo non fisico per la categoria dei velivoli unmanned tra la terra e il cielo. D'altro canto, al fine di garantire a chi opera a distanza su questi oggetti di avere, per tutta la durata della missione, la chiara percezione dello stato di funzionamento attuale del sistema e di come esso può (o potrebbe) interagire con l'ambiente che lo circonda (situational awarness), è necessario dotare il velivolo di apparecchiature che permettano di poter rilevare, all'occorrenza, il malfunzionamento: è questo il caso dei sistemi di fault detection. Questi due fondamentali aspetti sono la base fondante del presente lavoro che verte sul design di un ridotto ma preponderante sottosistema dell'UAV: il sistema di attuazione delle superfici di controllo. Esse sono, infatti, l'unico mezzo disponibile all'operatore per governare il mezzo nelle normali condizioni di funzionamento ma anche l'ultima possibilità per tentare di evitare l'evento disastroso nel caso altri sottosistemi siano chiaramente fuori dalle condizioni di normale funzionamento dell'oggetto.
Resumo:
This thesis is aimed to assess similarities and mismatches between the outputs from two independent methods for the cloud cover quantification and classification based on quite different physical basis. One of them is the SAFNWC software package designed to process radiance data acquired by the SEVIRI sensor in the VIS/IR. The other is the MWCC algorithm, which uses the brightness temperatures acquired by the AMSU-B and MHS sensors in their channels centered in the MW water vapour absorption band. At a first stage their cloud detection capability has been tested, by comparing the Cloud Masks they produced. These showed a good agreement between two methods, although some critical situations stand out. The MWCC, in effect, fails to reveal clouds which according to SAFNWC are fractional, cirrus, very low and high opaque clouds. In the second stage of the inter-comparison the pixels classified as cloudy according to both softwares have been. The overall observed tendency of the MWCC method, is an overestimation of the lower cloud classes. Viceversa, the more the cloud top height grows up, the more the MWCC not reveal a certain cloud portion, rather detected by means of the SAFNWC tool. This is what also emerges from a series of tests carried out by using the cloud top height information in order to evaluate the height ranges in which each MWCC category is defined. Therefore, although the involved methods intend to provide the same kind of information, in reality they return quite different details on the same atmospheric column. The SAFNWC retrieval being very sensitive to the top temperature of a cloud, brings the actual level reached by this. The MWCC, by exploiting the capability of the microwaves, is able to give an information about the levels that are located more deeply within the atmospheric column.
Resumo:
This thesis project aims to the development of an algorithm for the obstacle detection and the interaction between the safety areas of an Automated Guided Vehicles (AGV) and a Point Cloud derived map inside the context of a CAD software. The first part of the project focuses on the implementation of an algorithm for the clipping of general polygons, with which has been possible to: construct the safety areas polygon, derive the sweep of this areas along the navigation path performing a union and detect the intersections with line or polygon representing the obstacles. The second part is about the construction of a map in terms of geometric entities (lines and polygons) starting from a point cloud given by the 3D scan of the environment. The point cloud is processed using: filters, clustering algorithms and concave/convex hull derived algorithms in order to extract line and polygon entities representing obstacles. Finally, the last part aims to use the a priori knowledge of possible obstacle detections on a given segment, to predict the behavior of the AGV and use this prediction to optimize the choice of the vehicle's assigned velocity in that segment, minimizing the travel time.
Resumo:
In the last years radar sensor networks for localization and tracking in indoor environment have generated more and more interest, especially for anti-intrusion security systems. These networks often use Ultra Wide Band (UWB) technology, which consists in sending very short (few nanoseconds) impulse signals. This approach guarantees high resolution and accuracy and also other advantages such as low price, low power consumption and narrow-band interference (jamming) robustness. In this thesis the overall data processing (done in MATLAB environment) is discussed, starting from experimental measures from sensor devices, ending with the 2D visualization of targets movements over time and focusing mainly on detection and localization algorithms. Moreover, two different scenarios and both single and multiple target tracking are analyzed.
Resumo:
Industrial companies, particularly those with induction motors and gearboxes as integral components of their systems, are utilizing Condition Monitoring (CM) systems more frequently in order to discover the need for maintenance in advance, as traditional maintenance only performs tasks when a failure has been identified. Utilizing a CM system is essential to boost productivity and minimize long-term failures that result in financial loss. The more exact and practical the CM system, the better the data analysis, which adds to a more precise maintenance forecast. This thesis project is a cooperation with PEI Vibration Monitoring s.r.l. to design and construct a low-cost vibrational condition monitoring system to check the health of induction motors and gearboxes automatically. Moreover, according to the company's request, such a system should have specs comparable to NI 9234, one of the company's standard Data Acquisition (DAQ) boards, but at a significantly cheaper price. Additionally, PEI VM Company has supplied all hardware and electronic components. The suggested CM system is capable of highprecision autonomous monitoring of induction motors and gearboxes, and it consists of a Raspberry Pi 3B and MCC 172 DAQ board.