2 resultados para Fast Phase
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The performances of the H → ZZ* → 4l analysis are studied in the context of the High Luminosity upgrade of the LHC collider, with the CMS detector. The high luminosity (up to L = 5 × 10^34 cm−2s−1) of the accelerator poses very challenging experimental con- ditions. In particular, the number of overlapping events per bunch crossing will increase to 140. To cope with this difficult environment, the CMS detector will be upgraded in two stages: Phase-I and Phase-II. The tools used in the analysis are the CMS Full Simulation and the fast parametrized Delphes simulation. A validation of Delphes with respect to the Full Simulation is performed, using reference Phase-I detector samples. Delphes is then used to simulate the Phase-II detector response. The Phase-II configuration is compared with the Phase-I detector and the same Phase-I detector affected by aging processes, both modeled with the Full Simulation framework. Conclusions on these three scenarios are derived: the degradation in performances observed with the “aged” scenario shows that a major upgrade of the detector is mandatory. The specific upgrade configuration studied allows to keep the same performances as in Phase-I and, in the case of the four-muons channel, even to exceed them.
Resumo:
Isolated DC-DC converters play a significant role in fast charging and maintaining the variable output voltage for EV applications. This study aims to investigate the different Isolated DC-DC converters for onboard and offboard chargers, then, once the topology is selected, study the control techniques and, finally, achieve a real-time converter model to accomplish Hardware-In-The-Loop (HIL) results. Among the different isolated DC-DC topologies, the Dual Active Bridge (DAB) converter has the advantage of allowing bidirectional power flow, which enables operating in both Grid to Vehicle (G2V) and Vehicle to Grid (V2G) modalities. Recently, DAB has been used in the offboard chargers for high voltage applications due to SiC and GaN MOSFETs; this new technology also allows the utilization of higher switching frequencies. By empowering soft switching techniques to reduce switching losses, higher switching frequency operation is possible in DAB. There are four phase shift control techniques for the DAB converter. They are Single Phase shift, Extended Phase shift, Dual Phase shift, Triple Phase shift controls. This thesis considers two control strategies; Single-Phase, and Dual-Phase shifts, to understand the circulating currents, power losses, and output capacitor size reduction in the DAB. Hardware-In-The-Loop (HIL) experiments are carried out on both controls with high switching frequencies using the PLECS software tool and the RT box supporting the PLECS. Root Mean Square Error is also calculated for steady-state values of output voltage with different sampling frequencies in both the controls to identify the achievable sampling frequency in real-time. DSP implementation is also executed to emulate the optimized DAB converter design, and final real-time simulation results are discussed for both the Single-Phase and Dual-Phase shift controls.