3 resultados para FULLERENE FILM ELECTRODES
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Plastic solar cells bear the potential for large-scale power generation based on flexible, lightweight, inexpensive materials. Since the discovery of the photo-induced electron transfer from a conjugated polymer (electron-donor) to fullerene or its derivatives molecules (electron-acceptors), followed by the introduction of the bulk heterojunction concept which means donors and acceptors blended together to realize the fotoactive layer, materials and deposition techniques have been extensively studied. In this work, electrochemical-deposition methods of polymeric conductive films were studied in order to realize bulk heterojunction solar cells. Indium Tin Oxide (ITO) glass electrodes modified with a thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically prepared under potentiodynamic and potentiostatic conditions; then those techniques were applied for the electrochemical co-deposition of donor and acceptor on modified ITO electrode to produce the active layer (blend). For the deposition of the electron-donor polymer the electropolymerization of many functionalized thiophene monomers was investigated while, as regards acceptors, fullerene was used first, then the study was focused on its derivative PCBM ([6,6]-phenyl-C61-butyric acid methyl ester). The polymeric films obtained (PEDOT and blend) were electrochemically and spectrophotometrically characterized and the film thicknesses were evaluated by atomic force microscopy (AFM). Finally, to check the performances and the efficiency of the realized solar cells, tests were carried out under standard conditions. Nowadays bulk heterojunction solar cells are still poorly efficient to be competitively commercialized. A challenge will be to find new materials and better deposition techniques in order to obtain better performances. The research has led to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. The efficiency of the solar cells produced in this work is even lower (lower than 1 %). Despite all, solar cells of this type are interesting and may represent a cheaper and easier alternative to traditional silicon-based solar panels.
Resumo:
Hydrogen peroxide (H2O2) is a powerful oxidant which is commonly used in a wide range of applications in the industrial field. Several methods for the quantification of H2O2 have been developed. Among them, electrochemical methods exploit the ability of some hexacyanoferrates (such as Prussian Blue) to detect H2O2 at potentials close to 0.0 V (vs. SCE) avoiding the occurrence of secondary reactions, which are likely to run at large overpotentials. This electrocatalytic behaviour makes hexacyanoferrates excellent redox mediators. When deposited in the form of thin films on the electrode surfaces, they can be employed in the fabrication of sensors and biosensors, normally operated in solutions at pH values close to physiological ones. As hexacyanoferrates show limited stability in not strongly acidic solutions, it is necessary to improve the configuration of the modified electrodes to increase the stability of the films. In this thesis work, organic conducting polymers were used to fabricate composite films with Prussian Blue (PB) to be electro-deposited on Pt surfaces, in order to increase their pH stability. Different electrode configurations and different methods of synthesis of both components were tested, and for each one the achievement of a possible increase in the operational stability of Prussian Blue was verified. Good results were obtained for the polymer 3,3''-didodecyl-2,2':5',2''-terthiophene (poly(3,3''-DDTT)), whose presence created a favourable microenvironment for the electrodeposition of Prussian Blue. The electrochemical behaviour of the modified electrodes was studied in both aqueous and organic solutions. Poly(3,3''-DDTT) showed no response in aqueous solution in the potential range where PB is electroactive, thus in buffered aqueous solution is was possible to characterize the composite material, focusing only on the redox behaviour of PB. A combined effect of anion and cation of the supporting electrolyte was noticed. The response of Pt electrodes modified with films of the PB /poly(3,3''-DDTT) composite was evaluated for the determination of H2O2. The performance of such films was found better than that of the PB alone. It can be concluded that poly(3,3''-DDTT) plays a key role in the stabilization of Prussian Blue causing also a wider linearity range for the electrocatalytic response to H2O2.
Resumo:
L'elaborato tratta dell'ottimizzazione del processo di riduzione termica dell'ossido di grafene in termini di conduttività e trasmittanza ottica. Definiti gli standard di deposizione tramite spin-coating e riduzione termica, i film prodotti vengono caratterizzati tramite XPS, AFM, UPS, TGA, ne vengono testate la conducibilità, con e senza effetto di gate, e la trasmittanza ottica, ne si misura l'elasticità tramite spettroscopia di forza, tutto al fine di comprendere l'evoluzione del processo termico di riduzione e di individuare i parametri migliori al fine di progredire verso la produzione di elettrodi flessibili e trasparenti a base di grafen ossido ridotto.