3 resultados para Extreme value theory
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La teoria dei sistemi dinamici studia l'evoluzione nel tempo dei sistemi fisici e di altra natura. Nonostante la difficoltà di assegnare con esattezza una condizione iniziale (fatto che determina un non-controllo della dinamica del sistema), gli strumenti della teoria ergodica e dello studio dell'evoluzione delle densità di probabilità iniziali dei punti del sistema (operatore di Perron-Frobenius), ci permettono di calcolare la probabilità che un certo evento E (che noi definiamo come evento raro) accada, in particolare la probabilità che il primo tempo in cui E si verifica sia n. Abbiamo studiato i casi in cui l'evento E sia definito da una successione di variabili aleatorie (prima nel caso i.i.d, poi nel caso di catene di Markov) e da una piccola regione dello spazio delle fasi da cui i punti del sistema possono fuoriuscire (cioè un buco). Dagli studi matematici sui sistemi aperti condotti da Keller e Liverani, si ricava una formula esplicita del tasso di fuga nella taglia del buco. Abbiamo quindi applicato questo metodo al caso in cui l'evento E sia definito dai punti dello spazio in cui certe osservabili assumono valore maggiore o uguale a un dato numero reale a, per ricavare l'andamento asintotico in n della probabilità che E non si sia verificato al tempo n, al primo ordine, per a che tende all'infinito.
Resumo:
Analisi dell'incidenza di porosità interne sul limite di fatica di particolari getti di ghisa. Studio sviluppato grazie alla tecnica probabilistica "extreme value analysis".
Resumo:
The main task of this work is to present a concise survey on the theory of certain function spaces in the contexts of Hörmander vector fields and Carnot Groups, and to discuss briefly an application to some polyharmonic boundary value problems on Carnot Groups of step 2.