6 resultados para European MOOC design
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Previous earthquakes showed that shear wall damage could lead to catastrophic failures of the reinforced concrete building. The lateral load capacity of shear walls needs to be estimated to minimize associated losses during catastrophic events; hence it is necessary to develop and validate reliable and stable numerical methods able to converge to reasonable estimations with minimum computational effort. The beam-column 1-D line element with fiber-type cross-section model is a practical option that yields results in agreement with experimental data. However, shortcomings of using this model to predict the local damage response may come from the fact that the model requires fine calibration of material properties to overcome regularization and size effects. To reduce the mesh-dependency of the numerical model, a regularization method based on the concept of post-yield energy is applied in this work to both the concrete and the steel material constitutive laws to predict the nonlinear cyclic response and failure mechanism of concrete shear walls. Different categories of wall specimens known to produce a different response under in plane cyclic loading for their varied geometric and detailing characteristics are considered in this study, namely: 1) scaled wall specimens designed according to the European seismic design code and 2) unique full-scale wall specimens detailed according to the U.S. design code to develop a ductile behavior under cyclic loading. To test the boundaries of application of the proposed method, two full-scale walls with a mixed shear-flexure response and different values of applied axial load are also considered. The results of this study show that the use of regularized constitutive models considerably enhances the response predictions capabilities of the model with regards to global force-drift response and failure mode. The simulations presented in this thesis demonstrate the proposed model to be a valuable tool for researchers and engineers.
Resumo:
In this paper I will present the work I have completed during a five months work placement at CERN, European Organisation for Nuclear Research, from March to July 2011. This stage was done in the EN Department (ENgineering Department), STI Group (Sources, Targets and Interactions), TCD Section (Targets, Collimators and Dumps) under the supervision of Dr Cesare Maglioni. The task I was given concerned all the beam stoppers in the PS Complex, in detail: - General definition and requirements - Creation of a digital archive - Verification of the stoppers of the PS Complex - Design of the L4T.STP.1
Resumo:
The relatively young discipline of astronautics represents one of the scientifically most fascinating and technologically advanced achievements of our time. The human exploration in space does not offer only extraordinary research possibilities but also demands high requirements from man and technology. The space environment provides a lot of attractive experimental tools towards the understanding of fundamental mechanism in natural sciences. It has been shown that especially reduced gravity and elevated radiation, two distinctive factors in space, influence the behavior of biological systems significantly. For this reason one of the key objectives on board of an earth orbiting laboratory is the research in the field of life sciences, covering the broad range from botany, human physiology and crew health up to biotechnology. The Columbus Module is the only European low gravity platform that allows researchers to perform ambitious experiments in a continuous time frame up to several months. Biolab is part of the initial outfitting of the Columbus Laboratory; it is a multi-user facility supporting research in the field of biology, e.g. effect of microgravity and space radiation on cell cultures, micro-organisms, small plants and small invertebrates. The Biolab IEC are projects designed to work in the automatic part of Biolab. In this moment in the TO-53 department of Airbus Defence & Space (formerly Astrium) there are two experiments that are in phase C/D of the development and they are the subject of this thesis: CELLRAD and CYTOSKELETON. They will be launched in soft configuration, that means packed inside a block of foam that has the task to reduce the launch loads on the payload. Until 10 years ago the payloads which were launched in soft configuration were supposed to be structural safe by themselves and a specific structural analysis could be waived on them; with the opening of the launchers market to private companies (that are not under the direct control of the international space agencies), the requirements on the verifications of payloads are changed and they have become much more conservative. In 2012 a new random environment has been introduced due to the new Space-X launch specification that results to be particularly challenging for the soft launched payloads. The last ESA specification requires to perform structural analysis on the payload for combined loads (random vibration, quasi-steady acceleration and pressure). The aim of this thesis is to create FEM models able to reproduce the launch configuration and to verify that all the margins of safety are positive and to show how they change because of the new Space-X random environment. In case the results are negative, improved design solution are implemented. Based on the FEM result a study of the joins has been carried out and, when needed, a crack growth analysis has been performed.
Resumo:
Progettazione, test e creazione di schede elettroniche per lo studio dell'atmosfera in condizioni ambientali difficili.
Resumo:
The thesis work is developed under the European Student Earth Orbiter (ESEO) project supported by the European Space Agency (ESA) in order to help prepare a well-qualified space-engineering workforce for Europe's future. In the following chapters we are going to analyse how to simulate some ESEO subsystem. First of all, the Thermal Subsystem that evaluates the temperature evolution of on-board instruments. For this purpose, simulating also the orbital and attitude dynamics of the spacecraft, it is necessary in order to evaluate external environmental fluxes. The Power Subsystem will be the following step and it models the ability of a spacecraft to produce and store electrical energy. Finally, we will integrate in our software a block capable of simulating the communication link between the satellite and the Ground Station (GS). This last step is designed and validated during the thesis preparation.
Resumo:
In the last years, the European countries have paid increasing attention to renewable sources and greenhouse emissions. The Council of the European Union and the European Parliament have established ambitious targets for the next years. In this scenario, biomass plays a prominent role since its life cycle produces a zero net carbon dioxide emission. Additionally, biomass can ensure plant operation continuity thanks to its availability and storage ability. Several conventional systems running on biomass are available at the moment. Most of them are performant either in the large-scale or in the small power range. The absence of an efficient system on the small-middle scale inspired this thesis project. The object is an innovative plant based on a wet indirectly fired gas turbine (WIFGT) integrated with an organic Rankine cycle (ORC) unit for combined heat and power production. The WIFGT is a performant system in the small-middle power range; the ORC cycle is capable of giving value to low-temperature heat sources. Their integration is investigated in this thesis with the aim of carrying out a preliminary design of the components. The targeted plant output is around 200 kW in order not to need a wide cultivation area and to avoid biomass shipping. Existing in-house simulation tools are used: They are adapted to this purpose. Firstly the WIFGT + ORC model is built; Zero-dimensional models of heat exchangers, compressor, turbines, furnace, dryer and pump are used. Different fluids are selected but toluene and benzene turn out to be the most suitable. In the indirectly fired gas turbine a pressure ratio around 4 leads to the highest efficiency. From the thermodynamic analysis the system shows an electric efficiency of 38%, outdoing other conventional plants in the same power range. The combined plant is designed to recover thermal energy: Water is used as coolant in the condenser. It is heated from 60°C up to 90°C, ensuring the possibility of space heating. Mono-dimensional models are used to design the heat exchange equipment. Different types of heat exchangers are chosen depending on the working temperature. A finned-plate heat exchanger is selected for the WIFGT heat transfer equipment due to the high temperature, oxidizing and corrosive environment. A once-through boiler with finned tubes is chosen to vaporize the organic fluid in the ORC. A plate heat exchanger is chosen for the condenser and recuperator. A quasi-monodimensional model for single-stage axial turbine is implemented to design both the WIFGT and the ORC turbine. The system simulation after the components design shows an electric efficiency around 34% with a decrease by 10% compared to the zero-dimensional analysis. The work exhibits the system potentiality compared to the existing plants from both technical and economic point of view.