3 resultados para Escobar, Luis Antonio, 1925-1993

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this dissertation thesis is the estimation of the Saturnian satellites ephemerides using optical data of Cassini. In the first part we describe the software employed for the reduction of the images showing its main features and the accuracy that can be achieved comparing the results with published astrometry. Afterwards we describe the orbit determination problem (ODP) with particular focus on the weights selection for the estimation process. The third chapter describes the dynamical model used and the sources of potential errors in the residuals. The model have been validated trying to replicate JPL's published ephemerides SAT365, SAT375, SAT389 and SAT409. The final part investigates the residuals and the estimated ephemerides with particular focus on the giant moon Titan, the only in the solar system with an atmosphere other than the Earth. No astrometry have been retrieved in literature of Titan using optical observables, thus this represents one of the first investigations of the giant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jupiter and its moons are a complex dynamical system that include several phenomenon like tides interactions, moon's librations and resonances. One of the most interesting characteristics of the Jovian system is the presence of the Laplace resonance, where the orbital periods of Ganymede, Europa and Io maintain a 4:2:1 ratio respectively. It is interesting to study the role of the Laplace Resonance in the dynamic of the system, especially regarding the dissipative nature of the tidal interaction between Jupiter and its closest moon, Io. Numerous theories have been proposed regarding the orbital evolution of the Galilean satellites, but they disagree about the amount of dissipation of the system, therefore about the magnitude and the direction of the evolution of the system, mainly because of the lack of experimental data. The future JUICE space mission is a great opportunity to solve this dispute. JUICE is an ESA (European Space Agency) L-class mission (the largest category of missions in the ESA Cosmic Vision) that, at the beginning of 2030, will be inserted in the Jovian system and that will perform several flybys of the Galilean satellites, with the exception of Io. Subsequently, during the last part of the mission, it will orbit around Ganymede for nine months, with a possible extension of the mission. The data that JUICE will collect during the mission will have an exceptional accuracy, allowing to investigate several aspects of the dynamics the system, especially, the evolution of Laplace Resonance of the Galilean moons and its stability. This thesis will focus on the JUICE mission, in particular in the gravity estimation and orbit reconstruction of the Galilean satellites during the Jovian orbital phase using radiometric data. This is accomplished through an orbit determination technique called multi-arc approach, using the JPL's orbit determination software MONTE (Mission-analysis, Operations and Navigation Tool-kit Environment).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades the evolution of radio science has made it possible to infer the atmosphere composition, the surface and the internal structure of the planets. Since the arrival of the first landers on Mars it was possible to make accurate measurements of the dynamics of this planet; in this thesis we will focus on InSight, considering the data disclosed by the JPL relative to the period from November 26th, 2018 to August 15th, 2021. In particular, the Doppler and Range measurements conducted by the RISE (Rotation and Interior Structure Experiment) will be analyzed. Since the accuracy of these measurements was improved significantly the effects due to the atmosphere of Mars might be measured so it should thus be possible to obtain a better estimate of the parameters characterizing the rotational dynamic of Mars. A large part of this study will therefore be dedicated to the study, modeling, implementation and analysis of the atmosphere of Mars, in both its components: troposphere and ionosphere. Once the complete model of Mars had been built, i.e. including the atmosphere, it was then possible to analyze the residuals, obtained between the data of the measurements carried out and the values predicted by the developed model, in order to obtain an estimate of the rotational dynamic of Mars.