6 resultados para Enzyme-ligand Complexes
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the last decades, cyclometalated Ir(III) complexes have drawn a large interest for their unique properties: they are excellent triplet state emitters, thus the emission is phosphorescent in nature; typically high quantum yields and good stability make them good candidates for luminescent materials. Moreover, through an opportune choice of the ligands, it is possible to tune the emission along the whole visible spectra. Thanks to these interesting features, Ir(III) complexes have found different applications in several areas of applied science, from OLEDs to bioimaging. In particular, regarding the second application, a remarkable red-shift in the emission is required, in order to minimize the problem of the tissue penetration and the possible damages for the organisms. With the aim of synthesizing a new family of NIR emitting Ir(III) complexes, we envisaged the possibility to use for the first time 2-(1H-tetrazol-1-yl)pyridine as bidentate ligand able to provide the required red-shift of the emission of the final complexes. Exploiting the versatility of the ligand, I prepared two different families of heteroleptic Ir(III) complexes. In detail, in the first case the 2-(1H-tetrazol-1-yl)pyridine was used as bis-chelating N^N ligand, leading to cationic complexes, while in the second case it was used as cyclometalating C^N ligand, giving neutral complexes. The structures of the prepared molecules have been characterised by NMR spectroscopy and mass spectrometry. Moreover, the neutral complexes’ emissive properties have been measured: emission spectra have been recorded in solution at both room temperature and 77K, as well as in PMMA matrix. DFT calculation has then been performed and the obtained results have been compared to experimental ones.
Resumo:
Aim of the present work of thesis is to synthesize new non-noble metal based complexes to be employ in redox reactions by a metal-ligand cooperative mechanism. The need of replacing toxic and expensive precious metal complexes with more available and benign metals, has led to the development of new compounds based on cobalt and iron, which are the metals investigated in this study. A carbonyl-tetrahydroborato-bis[(2-diisopropylphosphino)ethyl]amine-cobalt complex bearing a PNP-type ligand is synthesized by a three-step route. Optimization attempt of reaction route were assessed in order to lowering reaction times and solvent waste. New cobalt complex has been tested in esters hydrogenation as well as in acceptorless dehydrogenative coupling of ethanol. Other varieties of substrates were also tested in order to evaluate any possible applications. Concerning iron complex, dicarbonyl-(η4-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)(1,3-dimethyl-ilidene)iron is synthesized by a three steps route, involving transmetallation of a silver complex, derived from an imidazolium salt, to iron complex. In order to avoid solvent waste, optimization is assessed. Studies were performed to assess activity of triscarbonyl iron precursor toward imidazolium salt and silver complexes.
Resumo:
The aim of this master’s research thesis was the employment of an enantiopure 1,3-aminoalcohol, the 1-(α-aminobenzyl)-2-naphthol, known as Betti base, for the synthesis of some novel compounds which show a C2 symmetry. Some of these compounds, after derivatization, were used as ligands in association with transition metals to prepare some catalysts for enantioselective catalytic reactions. Some aminoalcohol (Salan-type) derivatives of these compounds were obtained upon reduction and in some cases it was possible to obtain complexes with transition metals such as Mn, Ni, Co and Cu. Furthermore a novel 6-membered analogue bisoxazoline ligand, 2,6-bis((R)-1-Phenyl-1H-naphtho[1,2-e][1,3]oxazin-3-yl)pyridine, was obtained and from it two Cu-complexes were prepared. The metal complexes were employed in some reactions to test the asymmetric induction, which was in some cases up to discrete values.
Resumo:
High-valent terminal metal-oxygen adducts are supposed to be potent oxidising intermediates in enzymatic catalyses. In contrast to those from groups 6-8, oxidants that contain late transition metals (Co, Ni, Cu) are poorly understood. Because of their high reactivity, only a few examples of these compounds have been observed. The aim of this project was to investigate the reactivity of high-valent Ni(III) complexes, containing a monodentate oxygen-donor ligands, in hydrogen atom abstraction (HAA) and oxygen atom transfer (OAT) reactions which are typical of biological high-valent metal-oxygen species. Particularly, the Ni(III) complexes were generated in situ, at low temperature, from the oxidation of the Ni(II) species.The nickel complexes studied during this work were supported by tridentate ligands, with a strong σ-donating ability and exceedingly resistant to several common degradation pathways. These complexes vary based on the monodentate group in the fourth coordination position site, which can be neutral or anionic. In particular, we prepared four different Ni(III) complexes [NiIII(pyN2Me2)(OCO2H)] (12), [NiIII(pyN2Me2)(ONO2)] (14), [NiIII(pyN2Me2)(OC(O)CH3)] (18) and [NiIII(pyN2Me2)(OC(O)H)] (25). They feature a bicarbonate (-OCO2H), nitrate (-ONO2), acetate (-OC(O)CH3) and formate (-OC(O)H) group, respectively.HAA and OAT reactions were performed by adding 2,6-di-tert-butylphenol (2,6-DTBP) at -40°C, and triphenylphosphine (PPh3) at -80°C, to the in situ generated Ni(III) complexes, respectively. These reactions were carried out by adding 7 to 500 equivalents of substrate, in order to ensure pseudo-first order conditions. Since, the reactivity of the Ni(III) complex featured by the bicarbonate group has been studied in a previous work, we only investigated that of the species bearing the nitrate, acetate and formate ligand. Finally we compared the value of the reaction rate of all the four species in the HAA and OAT reactions.
Resumo:
In this thesis we developed three copper-containing systems. Copper shows intriguing abilities in photocatalysis, however, one of the major limitations of many copper complexes is that photochemical properties might be quenched in solution caused by π-interactions between solvent and solute, due to Jahn-Teller distortion in the excited state. As such, we herein seek to synthesise copper heteroleptic complexes that will subsequently be nanoprecipitated with a polymer. This will allow the polymer to encase the complex and prevent the solvent-induced quenching. Subsequently, the preparation of blends of polymer with the aforementioned copper complexes, at different weight ratios is sought. The preparation of the blend is particularly interesting as the catalytic properties are anticipated to be inferior on account of the low surface area. However, owing to the polymer matrix better, mechanical properties are anticipated. The blends can combine the mechanical properties of the polymer and the luminescence of the complex, with the advantage that the polymer matrix can also prevent quenching from oxygen. As final task, we developed a copper-containing monomer. The synthesis of a monomer that contains copper and can be excited under ultraviolet (UV) light is particularly interesting.
Resumo:
Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.