3 resultados para Electronic-properties
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’interazione spin-orbita (SOI) nel grafene è attualmente oggetto di intensa ricerca grazie alla recente scoperta di una nuova classe di materiali chiamati isolanti topologici. Questi materiali, la cui esistenza è strettamente legata alla presenza di una forte SOI, sono caratterizzati dall’interessante proprietà di avere un bulk isolante ed allo stesso tempo superfici conduttrici. La scoperta teorica degli isolanti topologici la si deve ad un lavoro nato con l’intento di studiare l’influenza dell’interazione spin-orbita sulle proprietà del grafene. Poichè questa interazione nel grafene è però intrinsecamente troppo piccola, non è mai stato possibile effettuare verifiche sperimentali. Per questa ragione, vari lavori di ricerca hanno recentemente proposto tecniche volte ad aumentare questa interazione. Sebbene alcuni di questi studi abbiano mostrato un effettivo aumento dell’interazione spin-orbita rispetto al piccolo valore intrinseco, sfortunatamente hanno anche evidenziato una consistente riduzione della qualità del grafene. L’obbiettivo che ci si pone in questa tesi è di determinare se sia possibile aumentare l’interazione spin-orbita nel grafene preservandone allo stesso tempo le qualità. La soluzione proposta in questo lavoro si basa sull’utilizzo di due materiali semiconduttori, diselenio di tungsteno WSe2 e solfuro di molibdeno MoS2, utilizzati da substrato su cui sopra verrà posizionato il grafene formando così un’eterostruttura -nota anche di “van der Waal” (vdW)-. Il motivo di questa scelta è dovuto al fatto che questi materiali, appartenenti alla famiglia dei metalli di transizione dicalcogenuri (TMDS), mostrano una struttura reticolare simile a quella del grafene, rendendoli ideali per formare eterostrutture e ancora più importante, presentano una SOI estremamente grande. Sostanzialmente l’idea è quindi di sfruttare questa grande interazione spin-orbita del substrato per indurla nel grafene aumentandone così il suo piccolo valore intrinseco.
Resumo:
X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.
Resumo:
Due to the limited availability of natural oil and the harmful effects of its usage, the industry has focused in searching for sustainable types of raw materials for the production of chemicals. The bioethanol, obtained by fermentation of biomass, has gained particular importance in recent years both as a biofuel, and as a “building block” molecule because it can be considered as a starting reagent to obtain other added value chemical compounds, such as ethylene, acetaldehyde, butadiene and ethyl acetate. The goal of this research was the study of the interaction of ethanol with catalysts based on TiO2-CeOX. Since the electronic properties have implications on the catalytic activity, the idea was to understand if the TiO2-CeOX systems have different reactivity from that of ceria and rutile alone, or an intermediate between them. The study was focused on the characterization of the adsorbed species on the catalysts surface after ethanol adsorption through an in-situ spectroscopic technique (DRIFTS) that allowed us to extract information that could be helpful for the understanding of the processes at the molecular level. The mass spectrometry was used to monitor on-line the desorbed products. Furthermore, reactivity tests in a flow reactor were performed, in order to verify the catalytic behavior of the samples in conditions which are more similar to those applied at an industrial scale. The samples showed to behave in different way depending on the conditions used and the thermal treatment. The particular behavior of the mixed samples with respect to the single oxides is interpreted for each case according to the spectroscopic information collected.