5 resultados para Electronic Model

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain the exact time-dependent Kohn-Sham potentials Vks for 1D Hubbard chains, driven by a d.c. external field, using the time-dependent electron density and current density obtained from exact many-body time-evolution. The exact Vxc is compared to the adiabatically-exact Vad-xc and the “instantaneous ground state” Vigs-xc. The effectiveness of these two approximations is analyzed. Approximations for the exchange-correlation potential Vxc and its gradient, based on the local density and on the local current density, are also considered and both physical quantities are observed to be far outside the reach of any possible local approximation. Insight into the respective roles of ground-state and excited-state correlation in the time-dependent system, as reflected in the potentials, is provided by the pair correlation function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goal of this work is related to the extension of an analytic electro-optical model. It will be used to describe single-junction crystalline silicon solar cells and a silicon/perovskite tandem solar cell in the presence of light-trapping in order to calculate efficiency limits for such a device. In particular, our tandem system is composed by crystalline silicon and a perovskite structure material: metilammoniumleadtriiodide (MALI). Perovskite are among the most convenient materials for photovoltaics thanks to their reduced cost and increasing efficiencies. Solar cell efficiencies of devices using these materials increased from 3.8% in 2009 to a certified 20.1% in 2014 making this the fastest-advancing solar technology to date. Moreover, texturization increases the amount of light which can be absorbed through an active layer. Using Green’s formalism it is possible to calculate the photogeneration rate of a single-layer structure with Lambertian light trapping analytically. In this work we go further: we study the optical coupling between the two cells in our tandem system in order to calculate the photogeneration rate of the whole structure. We also model the electronic part of such a device by considering the perovskite top cell as an ideal diode and solving the drift-diffusion equation with appropriate boundary conditions for the silicon bottom cell. We have a four terminal structure, so our tandem system is totally unconstrained. Then we calculate the efficiency limits of our tandem including several recombination mechanisms such as Auger, SRH and surface recombination. We focus also on the dependence of the results on the band gap of the perovskite and we calculare an optimal band gap to optimize the tandem efficiency. The whole work has been continuously supported by a numerical validation of out analytic model against Silvaco ATLAS which solves drift-diffusion equations using a finite elements method. Our goal is to develop a simpler and cheaper, but accurate model to study such devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is part of the fields of Material Physics and Organic Electronics and aims to determine the charge carrier density and mobility in the hydrated conducting polymer–polyelectrolyte blend PEDOT:PSS. This kind of material combines electronic semiconductor functionality with selective ionic transport, biocompatibility and electrochemical stability in water. This advantageous material properties combination makes PEDOT:PSS a unique material to build organic electrochemical transistors (OECTs), which have relevant application as amplifying transducers for bioelectronic signals. In order to measure charge carrier density and mobility, an innovative 4-wire, contact independent characterization technique was introduced, the electrolyte-gated van der Pauw (EgVDP) method, which was combined with electrochemical impedance spectroscopy. The technique was applied to macroscopic thin film samples and micro-structured PEDOT:PSS thin film devices fabricated using photolithography. The EgVDP method revealed to be effective for the measurements of holes’ mobility in hydrated PEDOT:PSS thin films, which resulted to be <μ>=(0.67±0.02) cm^2/(V*s). By comparing this result with 2-point-probe measurements, we found that contact resistance effects led to a mobility overestimation in the latter. Ion accumulation at the drain contact creates a gate-dependent potential barrier and is discussed as a probable reason for the overestimation in 2-point-probe measurements. The measured charge transport properties of PEDOT:PSS were analyzed in the framework of an extended drift-diffusion model. The extended model fits well also to the non-linear response in the transport characterization and results suggest a Gaussian DOS for PEDOT:PSS. The PEDOT:PSS-electrolyte interface capacitance resulted to be voltage-independent, confirming the hypothesis of its morphological origin, related to the separation between the electronic (PEDOT) and ionic (PSS) phases in the blend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolution of the traditional consumer in a power system to a prosumer has posed many problems in the traditional uni-directional grid. This evolution in the grid model has made it important to study the behaviour of microgrids. This thesis deals with the laboratory microgrid setup at the Munich School of Engineering, built to assist researchers in studying microgrids. The model is built in Dymola which is a tool for the OpenModelica language. Models for the different components were derived, suiting the purpose of this study. The equivalent parameters were derived from data sheets and other simulation programs such as PSCAD. The parameters were entered into the model grid and tested at steady state, firstly. This yielded satisfactory results that were similar to the reference results from MATPOWER power flow. Furthermore, fault conditions at several buses were simulated to observe the behaviour of the grid under these conditions. Recommendations for further developing this model to include more detailed models for components, such as power electronic converters, were made at the end of the thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this Master’s Degree thesis was born after the collaboration with the company Maserati S.p.a, an Italian luxury car maker with its headquarters located in Modena, in the heart of the Italian Motor Valley, where I worked as a stagiaire in the Virtual Engineering team between September 2021 and February 2022. This work proposes the validation using real-world ECUs of a Driver Drowsiness Detection (DDD) system prototype based on different detection methods with the goal to overcome input signal losses and system failures. Detection methods of different categories have been chosen from literature and merged with the goal of utilizing the benefits of each of them, overcoming their limitations and limiting as much as possible their degree of intrusiveness to prevent any kind of driving distraction: an image processing-based technique for human physical signals detection as well as methods based on driver-vehicle interaction are used. A Driver-In-the-Loop simulator is used to gather real data on which a Machine Learning-based algorithm will be trained and validated. These data come from the tests that the company conducts in its daily activities so confidential information about the simulator and the drivers will be omitted. Although the impact of the proposed system is not remarkable and there is still work to do in all its elements, the results indicate the main advantages of the system in terms of robustness against subsystem failures and signal losses.