12 resultados para Electromyographic (emg)

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a CMOS Amplifier with High Common Mode rejection designed in UMC 130nm technology. The goal is to achieve a high amplification factor for a wide range of biological signals (with frequencies in the range of 10Hz-1KHz) and to reject the common-mode noise signal. It is here presented a Data Acquisition System, composed of a Delta-Sigma-like Modulator and an antenna, that is the core of a portable low-complexity radio system; the amplifier is designed in order to interface the data acquisition system with a sensor that acquires the electrical signal. The Modulator asynchronously acquires and samples human muscle activity, by sending a Quasi-Digital pattern that encodes the acquired signal. There is only a minor loss of information translating the muscle activity using this pattern, compared to an encoding technique which uses astandard digital signal via Impulse-Radio Ultra-Wide Band (IR-UWB). The biological signals, needed for Electromyographic analysis, have an amplitude of 10-100μV and need to be highly amplified and separated from the overwhelming 50mV common mode noise signal. Various tests of the firmness of the concept are presented, as well the proof that the design works even with different sensors, such as Radiation measurement for Dosimetry studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we focus on pattern recognition methods related to EMG upper-limb prosthetic control. After giving a detailed review of the most widely used classification methods, we propose a new classification approach. It comes as a result of comparison in the Fourier analysis between able-bodied and trans-radial amputee subjects. We thus suggest a different classification method which considers each surface electrodes contribute separately, together with five time domain features, obtaining an average classification accuracy equals to 75% on a sample of trans-radial amputees. We propose an automatic feature selection procedure as a minimization problem in order to improve the method and its robustness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present thesis was to investigate the influence of lower-limb joint models on musculoskeletal model predictions during gait. We started our analysis by using a baseline model, i.e., the state-of-the-art lower-limb model (spherical joint at the hip and hinge joints at the knee and ankle) created from MRI of a healthy subject in the Medical Technology Laboratory of the Rizzoli Orthopaedic Institute. We varied the models of knee and ankle joints, including: knee- and ankle joints with mean instantaneous axis of rotation, universal joint at the ankle, scaled-generic-derived planar knee, subject-specific planar knee model, subject-specific planar ankle model, spherical knee, spherical ankle. The joint model combinations corresponding to 10 musculoskeletal models were implemented into a typical inverse dynamics problem, including inverse kinematics, inverse dynamics, static optimization and joint reaction analysis algorithms solved using the OpenSim software to calculate joint angles, joint moments, muscle forces and activations, joint reaction forces during 5 walking trials. The predicted muscle activations were qualitatively compared to experimental EMG, to evaluate the accuracy of model predictions. Planar joint at the knee, universal joint at the ankle and spherical joints at the knee and at the ankle produced appreciable variations in model predictions during gait trials. The planar knee joint model reduced the discrepancy between the predicted activation of the Rectus Femoris and the EMG (with respect to the baseline model), and the reduced peak knee reaction force was considered more accurate. The use of the universal joint, with the introduction of the subtalar joint, worsened the muscle activation agreement with the EMG, and increased ankle and knee reaction forces were predicted. The spherical joints, in particular at the knee, worsened the muscle activation agreement with the EMG. A substantial increase of joint reaction forces at all joints was predicted despite of the good agreement in joint kinematics with those of the baseline model. The introduction of the universal joint had a negative effect on the model predictions. The cause of this discrepancy is likely to be found in the definition of the subtalar joint and thus, in the particular subject’s anthropometry, used to create the model and define the joint pose. We concluded that the implementation of complex joint models do not have marked effects on the joint reaction forces during gait. Computed results were similar in magnitude and in pattern to those reported in literature. Nonetheless, the introduction of planar joint model at the knee had positive effect upon the predictions, while the use of spherical joint at the knee and/or at the ankle is absolutely unadvisable, because it predicted unrealistic joint reaction forces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of wearable devices for the monitoring of biological potentials is an ever-growing area of research. Wearable devices for the monitoring of vital signs such as heart-rate, respiratory rate, cardiac output and blood oxygenation are necessary in determining the overall health of a patient and allowing earlier detection of adverse events such as heart attacks and strokes and earlier diagnosis of disease. This thesis describes a bio-potential acquisition embedded system designed with an innovative analog front-end, showing the performance in EMG and ECG applications and the comparison between different noise reduction algorithms. We demonstrate that the proposed system is able to acquire bio-potentials with a signal quality equivalent to state of the art bench-top biomedical devices and can be therefore used for monitoring purpose, with the advantages of a low-cost low-power wearable device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’uso di sistemi wearable nell’ambito dell’acquisizione dei segnali biomedici è oggigiorno oggetto di grande interesse. Il loro uso si estende dal monitoraggio di parametri vitali per finalità cliniche al controllo delle dinamiche funzionali del corpo umano nel vivere quotidiano, grazie agli specifici segnali emessi dall’organismo, quali ECG ed EMG. Questa tesi, in particolar modo, riguarda le acquisizioni di segnali EMG, ovvero quelli emessi dalla muscolatura in concomitanza di movimenti, e descrive le modalità con cui essi possono essere acquisiti tramite elettrodi dry ed elettrodi wet. Nello specifico, i risultati ottenuti dai diversi approcci vengono confrontati e viene dimostrato il fatto che vi siano consistenti potenzialità nello sviluppo di sistemi per il riconoscimento di gesti che facciano affidamento sugli elettrodi dry, i quali presentano notevoli vantaggi applicativi rispetto alla controparte di tipo wet, la cui affidabilità in tale ambito è stata ampiamente confermata nel corso degli ultimi anni.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nel trattamento e nella cura di pazienti con lesione spinale è fondamentale una corretta valutazione della lesione e delle disfunzionalità che questa produce. Il cammino è senza dubbio una delle funzionalità maggiormente ridotta a seguito di una lesione, che può portare sia ad una diminuzione di questa capacità sia ad una completa inabilità. Nella valutazione del cammino il clinico si avvale di diverse strumentazioni come sistemi stereofotogrammetrici, pedane di forza ed elettromiografi che gli permettono di svolgere un’analisi strumentale del passo ed indagare le cause muscolari e neurologiche che portano a delle anormalità nella deambulazione. Questo lavoro si propone di presentare questi sistemi e compiere una panoramica dei principali parametri cinematici (velocità del cammino, lunghezza del passo, fase di stance, angoli articolari, ciclogrammi intra-articolari) che influenzano il passo e le metodologie con più successo nel migliorarli. Inoltre verranno evidenziati i risultati ottenuti dall’analisi elettromiografica riguardo alla presenza di pattern muscolari comuni alla base del cammino riscontrabili anche in persone sane e come gli impulsi EMG siano modulabili in ampiezza e durata a seguito di training motori.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con l’aumentare del livello delle manifestazioni sportive d’élite, la biomeccanica dello sport è diventata uno strumento fondamentale per permettere agli atleti di tenere il passo con le difficoltà legate alla competizione. Per riuscire in questo compito, vengono integrate tecnologie sempre più avanzate e fra queste spicca l’elettromiografia di superficie. L’obbiettivo di questo lavoro consiste in una revisione della letteratura per vedere come l’EMG permetta di studiare l’attivazione coordinata di più muscoli ad un’articolazione o ad un intero arto, valutandone le sinergie muscolari, e capire quali vantaggi questo possa portare alla ricerca sportiva. Lo studio è stato limitato all’ambito del ciclismo e della corsa in quanto discipline in cui questa tecnologia è più utilizzata. I risultati hanno mostrato come lo studio delle sinergie muscolari permetta di raggiungere una comprensione più profonda del movimento e come le tecniche di allenamento possano sfruttare questa conoscenza per monitorare gli atleti e raggiungere strategie motorie sempre più efficienti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amplitude of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) shows a large variability from trial to trial, although MEPs are evoked by the same repeated stimulus. A multitude of factors is believed to influence MEP amplitudes, such as cortical, spinal and motor excitability state. The goal of this work is to explore to which degree the variation in MEP amplitudes can be explained by the cortical state right before the stimulation. Specifically, we analyzed a dataset acquired on eleven healthy subjects comprising, for each subject, 840 single TMS pulses applied to the left M1 during acquisition of electroencephalography (EEG) and electromyography (EMG). An interpretable convolutional neural network, named SincEEGNet, was utilized to discriminate between low- and high-corticospinal excitability trials, defined according to the MEP amplitude, using in input the pre-TMS EEG. This data-driven approach enabled considering multiple brain locations and frequency bands without any a priori selection. Post-hoc interpretation techniques were adopted to enhance interpretation by identifying the more relevant EEG features for the classification. Results show that individualized classifiers successfully discriminated between low and high M1 excitability states in all participants. Outcomes of the interpretation methods suggest the importance of the electrodes situated over the TMS stimulation site, as well as the relevance of the temporal samples of the input EEG closer to the stimulation time. This novel decoding method allows causal investigation of the cortical excitability state, which may be relevant for personalizing and increasing the efficacy of therapeutic brain-state dependent brain stimulation (for example in patients affected by Parkinson’s disease).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La seguente tesi è stata sviluppata all’interno del progetto Neurograsp il cui obiettivo è individuare una correlazione tra l’attività muscolare e l’attivazione delle diverse aree corticali. Sono state impiegate diverse tecniche per acquisire segnali dal soggetto durante il task motorio da lui eseguito e questa tesi è incentrata sull’analisi dei dati acquisiti tramite Elettromiografia ad alta densità. I segnali elaborati sono quelli relativi all’attività muscolare di deltoide anteriore e posteriore, muscoli essenziali per il movimento di reaching. Il seguente lavoro è incentrato sull’elaborazione dei dati grezzi dall’HD-EMG e sulla loro rappresentazione con lo scopo di trarre conclusioni riguardo i pattern dell’attività muscolare e l’apprendimento motorio. In definitiva l’analisi qui descritta mira a descrivere nel contesto del progetto Neurograsp come si comportano i deltoidi riportando in dettaglio esempi dei risultati più significativi.