2 resultados para Electromagnetic Processes and Properties
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
According to the SM, while Lepton Flavour Violation is allowed in the neutral sector, Charged Lepton Flavour Violation (CLFV) processes are forbidden. The Mu2e Experiment at Fermilab will search for the CLFV process of neutrinoless conversion of a muon into an electron within the field of an Al nucleus. The Mu2e detectors and its state-of-the-art superconducting magnetic system are presented, with special focus put to the electromagnetic crystal calorimeter. The calorimeter is composed by two annular disks, each one hosting pure CsI crystals read-out by custom silicon photomultipliers (SiPMs). The SiPMs are amplified by custom electronics (FEE) and are glued to copper holders in group of 2 SiPMs and 2 FEE boards thus forming a crystal Readout Unit. These Readout Units are being tested at the Quality Control (QC) Station, whose design, realization and operations are presented in this work. The QC Station allows to determine the gain, the response and the photon detection efficiency of each unit and to evaluate the dependence of these parameters from the supply voltage and temperature. The station is powered by two remotely-controlled power supplies and monitored thanks to a Slow Control system which is also illustrated in this work. In this thesis, we also demonstrated that the calorimeter can perform its own measurement of the Mu2e normalization factor, i.e. the counting of the 1.8 MeV photon line produced in nuclear muon captures. A specific calorimeter sub-system called CAPHRI, composed by four LYSO crystals with SiPM readout, has been designed and tested. We simulated the capability of this system on performing this task showing that it can get a faster and more reliable measurement of the muon capture rates with respect to the current Mu2e detector dedicated to this measurement. The characterization of energy resolution and response uniformity of the four procured LYSO crystals are llustrated.
Resumo:
Il fenomeno dello scattering diffuso è stato oggetto di numerosi studi nell’arco degli ultimi anni, questo grazie alla sua rilevanza nell’ambito della propagazione elettromagnetica così come in molti altri campi di applicazione (remote sensing, ottica, fisica, etc.), ma la compresione completa di questo effetto è lungi dall’essere raggiunta. Infatti la complessità nello studio e nella caratterizzazione della diffusione deriva dalla miriade di casistiche ed effetti che si possono incontrare in un ambiente di propagazione reale, lasciando intuire la necessità di trattarne probabilisticamente il relativo contributo. Da qui nasce l’esigenza di avere applicazioni efficienti dal punto di vista ingegneristico che coniughino la definizione rigorosa del fenomeno e la conseguente semplificazione per fini pratici. In tale visione possiamo descrivere lo scattering diffuso come la sovrapposizione di tutti quegli effetti che si scostano dalle classiche leggi dell’ottica geometrica (riflessione, rifrazione e diffrazione) che generano contributi del campo anche in punti dello spazio e direzioni in cui teoricamente, per oggetti lisci ed omogenei, non dovrebbe esserci alcun apporto. Dunque l’effetto principale, nel caso di ambiente di propagazione reale, è la diversa distribuzione spaziale del campo rispetto al caso teorico di superficie liscia ed omogenea in congiunzione ad effetti di depolarizzazione e redistribuzione di energia nel bilancio di potenza. Perciò la complessità del fenomeno è evidente e l’obiettivo di tale elaborato è di proporre nuovi risultati che permettano di meglio descrivere lo scattering diffuso ed individuare altresì le tematiche sulle quali concentrare l’attenzione nei lavori futuri. In principio è stato quindi effettuato uno studio bibliografico così da identificare i modelli e le teorie esistenti individuando i punti sui quali riflettere maggiormente; nel contempo si sono analizzate le metodologie di caratterizzazione della permittività elettrica complessa dei materiali, questo per valutare la possibilità di ricavare i parametri da utilizzare nelle simulazioni utilizzando il medesimo setup di misura ideato per lo studio della diffusione. Successivamente si è realizzato un setup di simulazione grazie ad un software di calcolo elettromagnetico (basato sul metodo delle differenze finite nel dominio del tempo) grazie al quale è stato possibile analizzare la dispersione tridimensionale dovuta alle irregolarità del materiale. Infine è stata condotta una campagna di misure in camera anecoica con un banco sperimentale realizzato ad-hoc per effettuare una caratterizzazione del fenomeno di scattering in banda larga.