2 resultados para Electric rural program
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis aims to give a general view of pavement types all over the world, by showing the different characteristics of each one and its different life steps starting from construction, passing by maintenance and arriving until recycling phase. The flexible pavement took the main part of this work because it has been used in the last part of this thesis to design a project of a rural road. This project is located in the province of Bologna-Italy (‘Comune di Argelato’, 26 km in the north of Bologna), and has 5677, 81 m of length. A pavement design was made using the program BISAR 3.0 and a fatigue life study was made, also, in order to estimate the number of loads (in terms of heavy vehicles axle) to cause road’s failure . An alignment design was made for this project and a safety study was established in order to check if the available sight distance at curves respects the safety norms or not, by comparing it to the stopping sight distance. Different technical sheets are demonstrated and several cases are discussed in order to clarify the main design principles and underline the main hazardous cases to be avoided especially at intersection. This latter, its type’s choice depends on several factors in order to make the suitable design according to the environmental data. At this part of the road, the safety is a primordial point due to the high accident rate in this zone. For this reason, different safety aspects are discussed especially at roundabouts, signalized intersections, and also some other common intersection types. The design and the safety norms are taken with reference to AASHTO (American Association of State Highway and Transportation Officials), ACT (Transportation Association of Canada), and also according to Italian norms (Decreto Ministeriale delle Starde).
Resumo:
Motivation Thanks for a scholarship offered by ALma Mater Studiorum I could stay in Denmark for six months during which I could do physical tests on the device Gyro PTO at the Departmet of Civil Engineering of Aalborg University. Aim The goal of my thesis is an hydraulic evaluation of the device: Gyro PTO, a gyroscopic device for conversion of mechanical energy in ocean surface waves to electrical energy. The principle of the system is the application of the gyroscopic moment of flywheels equipped on a swing float excited by waves. The laboratory activities were carried out by: Morten Kramer, Jan Olsen, Irene Guaraldi, Morten Thøtt, Nikolaj Holk. The main purpose of the tests was to investigate the power absorption performance in irregular waves, but testing also included performance measures in regular waves and simple tests to get knowledge about characteristics of the device, which could facilitate the possibility of performing numerical simulations and optimizations. Methodology To generate the waves and measure the performance of the device a workstation was created in the laboratory. The workstation consist of four computers in each of wich there was a different program. Programs have been used : Awasys6, LabView, Wave lab, Motive optitrack, Matlab, Autocad Main Results Thanks to the obtained data with the tank testing was possible to make the process of wave analisys. We obtained significant wave height and period through a script Matlab and then the values of power produced, and energy efficiency of the device for two types of waves: regular and irregular. We also got results as: physical size, weight, inertia moments, hydrostatics, eigen periods, mooring stiffness, friction, hydrodynamic coefficients etc. We obtained significant parameters related to the prototype in the laboratory after which we scale up the results obtained for two future applications: one in Nissun Brending and in the North Sea. Conclusions The main conclusion on the testing is that more focus should be put into ensuring a stable and positive power output in a variety of wave conditions. In the irregular waves the power production was negative and therefore it does not make sense to scale up the results directly. The average measured capture width in the regular waves was 0.21 m. As the device width is 0.63 m this corresponds to a capture width ratio of: 0.21/0.63 * 100 = 33 %. Let’s assume that it is possible to get the device to produce as well in irregular waves under any wave conditions, and lets further assume that the yearly absorbed energy can be converted into electricity at a PTO-efficiency of 90 %. Under all those assumptions the results in table are found, i.e. a Nissum Bredning would produce 0.87 MWh/year and a North Sea device 85 MWh/year.