5 resultados para Electric field intensity (EFI)

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this simulation thesis is to present a tool for studying and eliminating various numerical problems observed while analyzing the behavior of the MIND cable during fast voltage polarity reversal. The tool is built on the MATLAB environment, where several simulations were run to achieve oscillation-free results. This thesis will add to earlier research on HVDC cables subjected to polarity reversals. Initially, the code does numerical simulations to analyze the electric field and charge density behavior of a MIND cable for certain scenarios such as before, during, and after polarity reversal. However, the primary goal is to reduce numerical oscillations from the charge density profile. The generated code is notable for its usage of the Arithmetic Mean Approach and the Non-Uniform Field Approach for filtering and minimizing oscillations even under time and temperature variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il progetto di questa tesi ha l’obiettivo di analizzare l’effetto dei Campi Elettrici Pulsati (PEF) sulla qualità delle foglie di basilico tailandese, essiccate sottovuoto. Nell’esperimento sono stati utilizzati i Campi Elettrici Pulsati a elettroporazione reversibile, come pretrattamento di essiccazione, e si è visto come questi influenzino la durata del trattamento di essiccazione. Dai risultati si può notare che essi riducono il tempo di processo in campioni sottoposti a 20°C, ma all’aumentare della temperatura tale effetto sembra essere meno significativo, come si può osservare già a 40°C. Una volta che le foglie sono state esposte ai Campi Elettrici Pulsati, vengono lasciate a riposo per 24 ore in un ambiente umido a temperatura ambiente prima di essere essiccate, per raggiungere buoni risultati qualitativi. I campioni, così analizzati, hanno una buona capacità di reidratazione, una bassa conduttività durante il processo di reidratazione e preservano meglio il colore durante l’esperimento, rispetto alle foglie che non sono state sottoposte ai Campi Elettrici Pulsati, né alle successive 24 ore di riposo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio relics are one of the different types of diffuse radio sources present in a fraction of galaxy clusters. They are characterized by elongated arc-like shapes, with sizes that range between 0.5 and 2 Mpc, and highly polarized emission (up to ∼60%) at GHz frequencies The linearly polarized radiation of relics, moving through a magnetized plasma which is the ICM, is affected by the rotation of the linear polarization vector. This effect, known as “Faraday rotation”, can cause depolarization. The study of this effect allows us to constrain the magnetic field projected along the line of sight. The aim of this thesis work is to constrain the magnetic field intensity and distribution in the periphery of the cluster PSZ2 G096.88+24.18: this cluster hosts a pair of radio relics that can be used for polarization analysis. To analyse the polarization properties of the relics in PSZ2 G096.88+24.18 radio relics we used new Jansky Very Large Array (VLA) observations together with archival observations. The polarization study has been performed using the Rotation Measure Synthesis technique, which allows us to recover polarization, minimizing the bandwidth depolarization. Thanks to this technique, we recovered more polarization from the southern relic (with respect to provious works), We studied also the depolarization trend with the resolution for the southern relic, and found that the polarization fraction decreases with the beamsize. Finally, we have produced simulated magnetic fields models, varying the auto-correlation lengths of the magnetic field, in order to reproduce the observed depolarization trend in the southern relic. Comparing our observational results and model predictions, we were able to constrain the scales over which the turbulent magnetic field varies within the cluster. We conclude that the depolarization observed in the southern relic is likely due to external depolarization caused by the magnetized ICM distribution within the cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aminothiols are critical cellular components that play numerous and important roles in metabolism as key extracellular reducing agents, critical substrates for proteins synthesis and detoxificants of free radicals and peroxides. Because altered thiols levels in body fluids are linked to specific pathological conditions, their measurement is thus considered very important. One method to determine these compounds is the capillary electrophoresis, a technique that involves the separation of charged molecules on the basis of their movement under the influence of an applied electric field. The instrument used in this work is equipped with an amperometric detector recording the current of the thiols oxidized at the end of the capillary at a BDD electrode. The aim of this work is to find a valid method for the separations of the aminothiols analyzed, in terms of capillary coating and experimental conditions. In order to find an alternative and less expensive electrode than BDD and to increase sensitivity for the detection of the thiols, a modified electrode consisting in a carbon paste electrode containing Cobalt-phthalocyanine has been studied. In this electrode Cobalt-phthalocyanine works as electrocatalyst to enhance the oxidation reaction, meanwhile the graphite acts as conductive mean. This kind of electrode shows great sensibility and low detection limits for the thiols that have a free thiolic group, but it is not sensible to disulfides. The analysis of human plasma point out that the best method found for the capillary electrophoresis is not useful for the detection of aminothiols in a healthy person, because the very low concentrations in which they are present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays the medical field is struggling to decrease bacteria biofilm formation which leads to infection. Biomedical devices sterilization has not changed over a long period of time. This results in high costs for hospitals healthcare managements. The objective of this project is to investigate electric field effects and surface energy manipulation as solutions for preventing bacteria biofilm for future devices. Based on electrokinectic environments 2 different methods were tested: feasibility of electric gradient through mediums (DEP) reinforced by numerical simulations; and EWOD by the fabrication of golden interdigitated electrodes on silicon glass substrates, standard ~480 nm Teflon (PTFE) layer and polymeric gasket to contain the bacteria medium. In the first experiment quantitative analysis was carried out to achieve forces required to reject bacteria without considering dielectric environment limitations as bacteria and medium frequency dependence. In the second experiment applied voltages was characterized by droplets contact angle measurements and put to the live bacteria tests. The project resulted on promising results for DEP application due to its wide range of frequency that can be used to make a “general” bacteria rejecting; but in terms of practicality, EWOD probably have higher potential for success but more experiments are needed to verify if can prevent biofilm adhesion besides the Teflon non-adhesive properties (including limitations as Teflon breakthrough, layer sensitivity) at incubation times larger than 24 hours.