11 resultados para Electric energy quality

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The quantity of electric energy utilized by a home, a business, or an electrically powered device is measured by an electricity meter, also known as an electric meter, electrical meter, or energy meter. Electric meters located at customers' locations are used by electric providers for billing. They are usually calibrated in billing units, with the kilowatt hour being the most popular (kWh). Typically, they are read once each billing cycle. When energy savings are sought during specific times, some meters may monitor demand, or the highest amount of electricity used during a specific time. Additionally, some meters feature relays for load shedding in response to responses during periods of peak load. The amount of electrical energy consumed by users is measured by a Watt-hour meter, also known as an energy meter. To charge the electricity usage by loads like lights, fans, and other appliances, utilities put these gadgets everywhere, including in households, businesses, and organizations. Watts are a fundamental power unit. A kilowatt is equal to one thousand watts. One kilowatt is regarded as one unit of energy used if used for one hour. These meters calculate the product of the instantaneous voltage and current readings and provide instantaneous power. This power is distributed over a period and is used during that time. Depending on the supply used by home or commercial installations, these may be single or three phase meters. These can be linked directly between line and load for minor service measurements, such as home consumers. However, step-down current transformers must be installed for greater loads to handle their higher current demands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need to use renewable energy sources, due to the massive production of pollution for the energy production, has led to the development of new technologies for the use of solar energy. The purpose of this thesis project is to synthesize and characterize new thiophene-based polymeric materials processable in water, a green solvent, for the construction of organic solar cells, promising and versatile devices used for the production of electric energy. For this, a highly regioregular polymer was synthesized through GRIM polymerization (Grignard Metathesis Polymerization) on which a study was performed to identify the optimal reaction time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motivation Thanks for a scholarship offered by ALma Mater Studiorum I could stay in Denmark for six months during which I could do physical tests on the device Gyro PTO at the Departmet of Civil Engineering of Aalborg University. Aim The goal of my thesis is an hydraulic evaluation of the device: Gyro PTO, a gyroscopic device for conversion of mechanical energy in ocean surface waves to electrical energy. The principle of the system is the application of the gyroscopic moment of flywheels equipped on a swing float excited by waves. The laboratory activities were carried out by: Morten Kramer, Jan Olsen, Irene Guaraldi, Morten Thøtt, Nikolaj Holk. The main purpose of the tests was to investigate the power absorption performance in irregular waves, but testing also included performance measures in regular waves and simple tests to get knowledge about characteristics of the device, which could facilitate the possibility of performing numerical simulations and optimizations. Methodology To generate the waves and measure the performance of the device a workstation was created in the laboratory. The workstation consist of four computers in each of wich there was a different program. Programs have been used : Awasys6, LabView, Wave lab, Motive optitrack, Matlab, Autocad Main Results Thanks to the obtained data with the tank testing was possible to make the process of wave analisys. We obtained significant wave height and period through a script Matlab and then the values of power produced, and energy efficiency of the device for two types of waves: regular and irregular. We also got results as: physical size, weight, inertia moments, hydrostatics, eigen periods, mooring stiffness, friction, hydrodynamic coefficients etc. We obtained significant parameters related to the prototype in the laboratory after which we scale up the results obtained for two future applications: one in Nissun Brending and in the North Sea. Conclusions The main conclusion on the testing is that more focus should be put into ensuring a stable and positive power output in a variety of wave conditions. In the irregular waves the power production was negative and therefore it does not make sense to scale up the results directly. The average measured capture width in the regular waves was 0.21 m. As the device width is 0.63 m this corresponds to a capture width ratio of: 0.21/0.63 * 100 = 33 %. Let’s assume that it is possible to get the device to produce as well in irregular waves under any wave conditions, and lets further assume that the yearly absorbed energy can be converted into electricity at a PTO-efficiency of 90 %. Under all those assumptions the results in table are found, i.e. a Nissum Bredning would produce 0.87 MWh/year and a North Sea device 85 MWh/year.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, the optimal operation of a neighborhood of smart households in terms of minimizing the total energy cost is analyzed. Each household may comprise several assets such as electric vehicles, controllable appliances, energy storage and distributed generation. Bi-directional power flow is considered for each household . Apart from the distributed generation unit, technological options such as vehicle-to-home and vehicle-to-grid are available to provide energy to cover self-consumption needs and to export excessive energy to other households, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il progetto di questa tesi ha l’obiettivo di analizzare l’effetto dei Campi Elettrici Pulsati (PEF) sulla qualità delle foglie di basilico tailandese, essiccate sottovuoto. Nell’esperimento sono stati utilizzati i Campi Elettrici Pulsati a elettroporazione reversibile, come pretrattamento di essiccazione, e si è visto come questi influenzino la durata del trattamento di essiccazione. Dai risultati si può notare che essi riducono il tempo di processo in campioni sottoposti a 20°C, ma all’aumentare della temperatura tale effetto sembra essere meno significativo, come si può osservare già a 40°C. Una volta che le foglie sono state esposte ai Campi Elettrici Pulsati, vengono lasciate a riposo per 24 ore in un ambiente umido a temperatura ambiente prima di essere essiccate, per raggiungere buoni risultati qualitativi. I campioni, così analizzati, hanno una buona capacità di reidratazione, una bassa conduttività durante il processo di reidratazione e preservano meglio il colore durante l’esperimento, rispetto alle foglie che non sono state sottoposte ai Campi Elettrici Pulsati, né alle successive 24 ore di riposo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation deals with the development of a project concerning a demonstration in the scope of the Supply Chain 6 of the Internet of Energy (IoE) project: the Remote Monitoring Emulator, which bears my personal contribution in several sections. IoE is a project of international relevance, that means to establish an interoperability standard as regards the electric power production and utilization infrastructure, using Smart Space platforms. The future perspectives of IoE have to do with a platform for electrical power trade-of, the Smart Grid, whose energy is produced by decentralized renewable sources and whose services are exploited primarily according to the Internet of Things philosophy. The main consumers of this kind of smart technology will be Smart Houses (that is to say, buildings controlled by an autonomous system for electrical energy management that is interoperable with the Smart Grid) and Electric Mobility, that is a smart and automated management regarding movement and, overall, recharging of electrical vehicles. It is precisely in the latter case study that the project Remote Monitoring Emulator takes place. It consists in the development of a simulated platform for the management of an electrical vehicle recharging in a city. My personal contribution to this project lies in development and modeling of the simulation platform, of its counterpart in a mobile application and implementation of a city service prototype. This platform shall, ultimately, make up a demonstrator system exploiting the same device which a real user, inside his vehicle, would use. The main requirements that this platform shall satisfy will be interoperability, expandability and relevance to standards, as it needs to communicate with other development groups and to effectively respond to internal changes that can affect IoE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study concerns the acoustical characterisation of Italian historical theatres. It moved from the ISO 3382 which provides the guidelines for the measurement of a well established set of room acoustic parameters inside performance spaces. Nevertheless, the peculiarity of Italian historical theatres needs a more specific approach. The Charter of Ferrara goes in this direction, aiming at qualifying the sound field in this kind of halls and the present work pursues the way forward. Trying to understand how the acoustical qualification should be done, the Bonci Theatre in Cesena has been taken as a case study. In September 2012 acoustical measurements were carried out in the theatre, recording monaural e binaural impulse responses at each seat in the hall. The values of the time criteria, energy criteria and psycho-acoustical and spatial criteria have been extracted according to ISO 3382. Statistics were performed and a 3D model of the theatre was realised and tuned. Statistical investigations were carried out on the whole set of measurement positions and on carefully chosen reduced subsets; it turned out that these subsets are representative only of the “average” acoustics of the hall. Normality tests were carried out to verify whether EDT, T30 and C80 could be described with some degree of reliability with a theoretical distribution. Different results, according to the varying assumptions underlying each test, were found. Finally, an attempt was made to correlate the numerical results emerged from the statistical analysis to the perceptual sphere. Looking for “acoustical equivalent areas”, relative difference limens were considered as threshold values. No rule of thumb emerged. Finally, the significance of the usual representation through mean values and standard deviation, which may be meaningful for normal distributed data, was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade the near-surface mounted (NSM) strengthening technique using carbon fibre reinforced polymers (CFRP) has been increasingly used to improve the load carrying capacity of concrete members. Compared to externally bonded reinforcement (EBR), the NSM system presents considerable advantages. This technique consists in the insertion of carbon fibre reinforced polymer laminate strips into pre-cut slits opened in the concrete cover of the elements to be strengthened. CFRP reinforcement is bonded to concrete with an appropriate groove filler, typically epoxy adhesive or cement grout. Up to now, research efforts have been mainly focused on several structural aspects, such as: bond behaviour, flexural and/or shear strengthening effectiveness, and energy dissipation capacity of beam-column joints. In such research works, as well as in field applications, the most widespread adhesives that are used to bond reinforcements to concrete are epoxy resins. It is largely accepted that the performance of the whole application of NSM systems strongly depends on the mechanical properties of the epoxy resins, for which proper curing conditions must be assured. Therefore, the existence of non-destructive methods that allow monitoring the curing process of epoxy resins in the NSM CFRP system is desirable, in view of obtaining continuous information that can provide indication in regard to the effectiveness of curing and the expectable bond behaviour of CFRP/adhesive/concrete systems. The experimental research was developed at the Laboratory of the Structural Division of the Civil Engineering Department of the University of Minho in Guimar\~aes, Portugal (LEST). The main objective was to develop and propose a new method for continuous quality control of the curing of epoxy resins applied in NSM CFRP strengthening systems. This objective is pursued through the adaptation of an existing technique, termed EMM-ARM (Elasticity Modulus Monitoring through Ambient Response Method) that has been developed for monitoring the early stiffness evolution of cement-based materials. The experimental program was composed of two parts: (i) direct pull-out tests on concrete specimens strengthened with NSM CFRP laminate strips were conducted to assess the evolution of bond behaviour between CFRP and concrete since early ages; and, (ii) EMM-ARM tests were carried out for monitoring the progressive stiffness development of the structural adhesive used in CFRP applications. In order to verify the capability of the proposed method for evaluating the elastic modulus of the epoxy, static E-Modulus was determined through tension tests. The results of the two series of tests were then combined and compared to evaluate the possibility of implementation of a new method for the continuous monitoring and quality control of NSM CFRP applications.