14 resultados para Electric Machine drive systems

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the internationalization of contemporary higher education, academic institutions based in non-English speaking countries are increasingly urged to produce contents in English to address international prospective students and personnel, as well as to increase their attractiveness. The demand for English translations in the institutional academic domain is consequently increasing at a rate exceeding the capacity of the translation profession. Resources for assisting non-native authors and translators in the production of appropriate texts in L2 are therefore required in order to help academic institutions and professionals streamline their translation workload. Some of these resources include: (i) parallel corpora to train machine translation systems and multilingual authoring tools; and (ii) translation memories for computer-aided tools. The purpose of this study is to create and evaluate reference resources like the ones mentioned in (i) and (ii) through the automatic sentence alignment of a large set of Italian and English as a Lingua Franca (ELF) institutional academic texts given as equivalent but not necessarily parallel (i.e. translated). In this framework, a set of aligning algorithms and alignment tools is examined in order to identify the most profitable one(s) in terms of accuracy and time- and cost-effectiveness. In order to determine the text pairs to align, a sample is selected according to document length similarity (characters) and subsequently evaluated in terms of extent of noisiness/parallelism, alignment accuracy and content leverageability. The results of these analyses serve as the basis for the creation of an aligned bilingual corpus of academic course descriptions, which is eventually used to create a translation memory in TMX format.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The trend related to the turnover of internal combustion engine vehicles with EVs goes by the name of electrification. The push electrification experienced in the last decade is linked to the still ongoing evolution in power electronics technology for charging systems. This is the reason why an evolution in testing strategies and testing equipment is crucial too. The project this dissertation is based on concerns the investigation of a new EV simulator design. that optimizes the structure of the testing equipment used by the company who commissioned this work. Project requirements can be summarized in the following two points: space occupation reduction and parallel charging implementation. Some components were completely redesigned, and others were substituted with equivalent ones that could perform the same tasks. In this way it was possible to reduce the space occupation of the simulator, as well as to increase the efficiency of the testing device. Moreover, the possibility of conjugating different charging simulations could be investigated by parallelly launching two testing procedures on a unique machine, properly predisposed for supporting the two charging protocols used. On the back of the results achieved in the body of this dissertation, a new design for the EV simulator was proposed. In this way, space reduction was obtained, and space occupation efficiency was improved with the proposed new design. The testing device thus resulted to be way more compact, enabling to gain in safety and productivity, along with a 25% cost reduction. Furthermore, parallel charging was implemented in the proposed new design since the conducted tests clearly showed the feasibility of parallel charging sessions. The results presented in this work can thus be implemented to build the first prototype of the new EV simulator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of the thesis project, developed within the Line Control & Software Engineering team of G.D company, is to analyze and identify the appropriate tool to automate the HW configuration process using Beckhoff technologies by importing data from an ECAD tool. This would save a great deal of time, since the I/O topology created as part of the electrical planning is presently imported manually in the related SW project of the machine. Moreover, a manual import is more error-prone because of human mistake than an automatic configuration tool. First, an introduction about TwinCAT 3, EtherCAT and Automation Interface is provided; then, it is analyzed the official Beckhoff tool, XCAD Interface, and the requirements on the electrical planning to use it: the interface is realized by means of the AutomationML format. Finally, due to some limitations observed, the design and implementation of a company internal tool is performed. Tests and validation of the tool are performed on a sample production line of the company.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, the study and the simulation of two advanced sensorless speed control techniques for a surface PMSM are presented. The aim is to implement a sensorless control algorithm for a submarine auxiliary propulsion system. This experimental activity is the result of a project collaboration with L3Harris Calzoni, a leader company in A&D systems for naval handling in military field. A Simulink model of the whole electric drive has been developed. Due to the satisfactory results of the simulations, the sensorless control system has been implemented in C code for STM32 environment. Finally, several tests on a real brushless machine have been carried out while the motor was connected to a mechanical load to simulate the real scenario of the final application. All the experimental results have been recorded through a graphical interface software developed at Calzoni.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questo progetto di tesi è parte di un programma più ampio chiamato TIME (Tecnologia Integrata per Mobilità Elettrica) sviluppato tra diversi gruppi di ricerca afferenti al settore meccanico, termofluidodinamico e informatico. TIME si pone l'obiettivo di migliorare la qualità dei componenti di un sistema powertrain presenti oggi sul mercato progettando un sistema general purpose adatto ad essere installato su veicoli di prima fornitura ma soprattutto su retrofit, quindi permettendo il ricondizionamento di veicoli con motore a combustione esistenti ma troppo datati. Lo studio svolto si pone l'obiettivo di identificare tutti gli aspetti di innovazione tecnologica che possono essere installati all'interno del sistema di interazione uomo-macchina. All'interno di questo progetto sarà effettuata una pianificazione di tutto il lavoro del gruppo di ricerca CIRI-ICT, partendo dallo studio normativo ed ergonomico delle interfacce dei veicoli analizzando tutti gli elementi di innovazione che potranno far parte del sistema TIME e quindi programmare tutte le attività previste al fine di raggiungere gli obiettivi prefissati, documentando opportunamente tutto il processo. Nello specifico saranno analizzate e definite le tecniche da utilizzare per poi procedere alla progettazione e implementazione di un primo sistema sperimentale di Machine Learning e Gamification con lo scopo di predire lo stato della batteria in base allo stile di guida dell'utente e incentivare quest'ultimo tramite sistemi di Gamification installati sul cruscotto ad una guida più consapevole dei consumi. Questo sistema sarà testato su dati simulati con l'obiettivo di avere un prodotto configurabile da installare sul veicolo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years Electric Vehicles (EVs) are getting more importance as future transport systems, due to the increase of the concerns relevant to the greenhouse gases emission and the use fossil fuel. The management of the charging and discharging process of EVs could provide new business model for participating in the electricity markets. Moreover, vehicle to grid systems have the potential of increasing utility system flexibility. This thesis develops some models for the optimal integration of the EVs in the electricity market. In particular, the thesis focuses on the optimal bidding strategy of an EV aggregator participating to both the day ahead market and the secondary reserve market. The aggregator profit is maximized taking into account the energy balance equation, as well as the technical constraints of energy settlement, power supply and state of charge of the EVs. The results obtained by using the GAMS (General Algebraic Modelling System) environment are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master thesis work is focused on the development of a predictive EHC control function for a diesel plug-in hybrid electric vehicle equipped with a EURO 7 compliant exhaust aftertreatment system (EATS), with the purpose of showing the advantages provided by the implementation of a predictive control strategy with respect to a rule-based one. A preliminary step will be the definition of an accurate powertrain and EATS physical model, starting from already existing and validated applications. Then, a rule-based control strategy managing the torque split between the electric motor (EM) and the internal combustion engine (ICE) will be developed and calibrated, with the main target of limiting tailpipe NOx emission by taking into account EM and ICE operating conditions together with EATS conversion efficiency. The information available from vehicle connectivity will be used to reconstruct the future driving scenario, also referred to as electronic horizon (eHorizon), and in particular to predict ICE first start. Based on this knowledge, an EATS pre-heating phase can be planned to avoid low pollutant conversion efficiencies, thus preventing high NOx emission due to engine cold start. Consequently, the final NOx emission over the complete driving cycle will be strongly reduced, allowing to comply with the limits potentially set by the incoming EURO 7 regulation. Moreover, given the same NOx emission target, the gain achieved thanks to the implementation of an EHC predictive control function will allow to consider a simplified EATS layout, thus reducing the related manufacturing cost. The promising results achieved in terms of NOx emission reduction show the effectiveness of the application of a predictive control strategy focused on EATS thermal management and highlight the potential of a complete integration and parallel development of involved vehicle physical systems, control software and connectivity data management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric cars are increasingly popular due to a transition of mobility towards more sustainable forms. From an increasingly green and pollution reduction perspective, there are more and more incentives that encourage customers to invest in electric cars. Using the Industrial Design and Structure (IDeS) research method, this project has the aim to design a new electric compact SUV suitable for all people who live in the city, and for people who move outside urban areas. In order to achieve the goal of developing a new car in the industrial automotive environment, the compact SUV segment was chosen because it is a vehicle very requested by the costumers and it is successful in the market due to its versatility. IDeS is a combination of innovative and advanced systematic approaches used to set up a new industrial project. The IDeS methodology is sequentially composed of Quality Function Deployment (QFD), Benchmarking (BM), Top-Flop analysis (TFA), Stylistic Design Engineering (SDE), Design for X, Prototyping, Testing, Budgeting, and Planning. The work is based on a series of steps and the sequence of these must be meticulously scheduled, imposing deadlines along the work. Starting from an analysis of the market and competitors, the study of the best and worst existing parameters in the competitor’s market is done, arriving at the idea of a better product in terms of numbers and innovation. After identifying the characteristics that the new car should have, the other step is the styling part, with the definition of the style and the design of the machine on a 3D CAD. Finally, it switches to the prototyping and testing phase to see if the product is able to work. Ultimately, intending to place the car on the market, it is essential to estimate the necessary budget for a possible investment in this project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major issues for power converters that are connected to the electric grid are the measurement of three phase Conduced Emissions (CE), which are regulated by international and regional standards. CE are composed of two components which are Common Mode (CM) noise and Differential Mode (DM) noise. To achieve compliance with these regulations the Equipment Under Test (EUT) includes filtering and other electromagnetic emission control strategies. The separation of differential mode and common mode noise in Electromagnetic Interference (EMI) analysis is a well-known procedure which is useful especially for the optimization of the EMI filter, to improve the CM or DM attenuation depending on which component of the conducted emissions is predominant, and for the analysis and the understanding of interference phenomena of switched mode power converters. However, separating both components is rarely done during measurements. Therefore, in this thesis an active device for the separation of the CM and DM EMI noise in three phase power electronic systems has been designed and experimentally analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial Intelligence (AI) is gaining ever more ground in every sphere of human life, to the point that it is now even used to pass sentences in courts. The use of AI in the field of Law is however deemed quite controversial, as it could provide more objectivity yet entail an abuse of power as well, given that bias in algorithms behind AI may cause lack of accuracy. As a product of AI, machine translation is being increasingly used in the field of Law too in order to translate laws, judgements, contracts, etc. between different languages and different legal systems. In the legal setting of Company Law, accuracy of the content and suitability of terminology play a crucial role within a translation task, as any addition or omission of content or mistranslation of terms could entail legal consequences for companies. The purpose of the present study is to first assess which neural machine translation system between DeepL and ModernMT produces a more suitable translation from Italian into German of the atto costitutivo of an Italian s.r.l. in terms of accuracy of the content and correctness of terminology, and then to assess which translation proves to be closer to a human reference translation. In order to achieve the above-mentioned aims, two human and automatic evaluations are carried out based on the MQM taxonomy and the BLEU metric. Results of both evaluations show an overall better performance delivered by ModernMT in terms of content accuracy, suitability of terminology, and closeness to a human translation. As emerged from the MQM-based evaluation, its accuracy and terminology errors account for just 8.43% (as opposed to DeepL’s 9.22%), while it obtains an overall BLEU score of 29.14 (against DeepL’s 27.02). The overall performances however show that machines still face barriers in overcoming semantic complexity, tackling polysemy, and choosing domain-specific terminology, which suggests that the discrepancy with human translation may still be remarkable.