9 resultados para Einstein Manifolds
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.
Resumo:
Una 3-varietà si dice virtualmente fibrata se ammette un rivestimento finito che è un fibrato con base una circonferenza e fibra una superficie. In seguito al lavoro di geometrizzazione di Thurston e Perelman, la generica 3-varietà risulta essere iperbolica; un recente risultato di Agol afferma che una tale varietà è sempre virtualmente fibrata. L’ingrediente principale della prova consiste nell’introduzione, dovuta a Wise, dei complessi cubici nello studio delle 3-varietà iperboliche. Questa tesi si concentra sulle proprietà algebriche e geometriche di queste strutture combinatorie e sul ruolo che esse hanno giocato nella dimostrazione del Teorema di Fibrazione Virtuale.
Resumo:
La tesi è relativa al confronto tra Minkowski e Einstein in merito all'esposizione della teoria della relatività.
Resumo:
We have extended the Boltzmann code CLASS and studied a specific scalar tensor dark energy model: Induced Gravity
Resumo:
La Tesi presenta uno studio sulla distribuzione dei raggi di Einsten compiuta su campioni di ammassi simulati. Il codice utilizzato, MOKA, consente la costruzione di vasti campioni di ammassi in differenti cosmologie e con differenti parametri strutturali. I risultati ottenuti sono stati confrontati con quelli ottenuti dalla simulazione cosmologica N-body ad alta risoluzione MUSIC. Sono stati quindi prodotti campioni di ammassi per sette valori diversi della normalizzazione dello spettro di potenza e 7 valori diversi del parametro di densità della materia mantenendo la geometria piatta
Resumo:
Questo lavoro di tesi si occupa dello studio del fenomeno di condensazione di Bose-Einstein sia da un punto di vista teorico che, in maniera più accennata, da quello pratico-sperimentale; risulta pertanto strutturato in due parti. La prima è incentrata sull'analisi prettamente teorico-matematica dell'argomento, e si apre con l'introduzione dell'opportuno apparato formale atto alla trattazione della statistica quantistica; a tal proposito vengono definiti gli operatori di densità. Quindi viene affrontato il problema dell'indistinguibilità degli enti quantistici e del conseguente carattere di simmetria delle funzioni d'onda, individuando così la differenza tra particelle fermioniche e bosoniche. Di queste ultime vengono largamente studiate la statistica cui essere rispondono e le loro principali caratteristiche termodinamiche. Infine, viene analizzato il caso specifico del gas ideale di Bose, trattato nei limiti del continuo e termodinamico; è nel corso di questa trattazione che emerge il fenomeno di transizione chiamato condensazione di Bose-Einstein, di cui vengono ampiamente studiate le proprietà. La seconda parte, invece, è volta all'analisi delle tecniche sperimentali utilizzate per la realizzazione della condensazione, in particolare le trappole ottiche di dipolo; dopo averne studiato le caratteristiche, vengono illustrate alcune tecniche di raffreddamento di atomi intrappolati. Il lavoro si conclude con la trattazione delle principali tecniche diagnostiche e di riconoscimento del condensato.
Resumo:
The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.
Resumo:
L’obbiettivo di questa tesi è quello di analizzare le conseguenze della scelta del frame (Jordan o Einstein) nel calcolo delle proprietà degli spettri primordiali generati dall’inflazione ed in particolare dell’osservabile r (rapporto tensore su scalare) al variare del potenziale del campo che genera l’espansione accelerata. Partendo dalla descrizione della teoria dell’inflazione in relatività generale, focalizzando l’attenzione sui motivi che hanno portato all’introduzione di questa teoria, vengono presentate le tecniche di utilizzo comune per lo studio della dinamica omogenea (classica) inflazionaria e di quella disomogenea (quantistica). Una particolare attenzione viene rivolta ai metodi di approssimazione che è necessario adottare per estrarre predizioni analitiche dai modelli inflazionari per poi confrontarle con le osservazioni. Le tecniche introdotte vengono poi applicate ai modelli di inflazione con gravità indotta, ovvero ad una famiglia di modelli con accoppiamento non minimale tra il campo scalare inflatonico e il settore gravitazionale. Si porrà attenzione alle differenze rispetto ai modelli con accoppiamento minimale, e verrà studiata la dinamica in presenza di alcuni potenziali derivanti dalla teoria delle particelle e diffusi in letteratura. Il concetto di “transizione tra il frame di Jordan e il frame di Einstein” viene illustrato e le sue conseguenze nel calcolo approssimato del rapporto tensore su scalare sono discusse. Infine gli schemi di approssimazione proposti vengono analizzati numericamente. Risulterà che per due dei tre potenziali presentati i metodi di approssimazione sono più accurati nel frame di Einstein, mentre per il terzo potenziale i due frames portano a risultati analitici similmente accurati.
Resumo:
The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.