3 resultados para Effective teaching -- Computer network resources

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data Distribution Management (DDM) is a core part of High Level Architecture standard, as its goal is to optimize the resources used by simulation environments to exchange data. It has to filter and match the set of information generated during a simulation, so that each federate, that is a simulation entity, only receives the information it needs. It is important that this is done quickly and to the best in order to get better performances and avoiding the transmission of irrelevant data, otherwise network resources may saturate quickly. The main topic of this thesis is the implementation of a super partes DDM testbed. It evaluates the goodness of DDM approaches, of all kinds. In fact it supports both region and grid based approaches, and it may support other different methods still unknown too. It uses three factors to rank them: execution time, memory and distance from the optimal solution. A prearranged set of instances is already available, but we also allow the creation of instances with user-provided parameters. This is how this thesis is structured. We start introducing what DDM and HLA are and what do they do in details. Then in the first chapter we describe the state of the art, providing an overview of the most well known resolution approaches and the pseudocode of the most interesting ones. The third chapter describes how the testbed we implemented is structured. In the fourth chapter we expose and compare the results we got from the execution of four approaches we have implemented. The result of the work described in this thesis can be downloaded on sourceforge using the following link: https://sourceforge.net/projects/ddmtestbed/. It is licensed under the GNU General Public License version 3.0 (GPLv3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to develop a prototype of an e-learning environment that can foster Content and Language Integrated Learning (CLIL) for students enrolled in an aircraft maintenance training program, which allows them to obtain a license valid in all EU member states. Background research is conducted to retrace the evolution of the field of educational technology, analyzing different learning theories – behaviorism, cognitivism, and (socio-)constructivism – and reflecting on how technology and its use in educational contexts has changed over time. Particular attention is given to technologies that have been used and proved effective in Computer Assisted Language Learning (CALL). Based on the background research and on students’ learning objectives, i.e. learning highly specialized contents and aeronautical technical English, a bilingual approach is chosen, three main tools are identified – a hypertextbook, an exercise creation activity, and a discussion forum – and the learning management system Moodle is chosen as delivery medium. The hypertextbook is based on the technical textbook written in English students already use. In order to foster text comprehension, the hypertextbook is enriched by hyperlinks and tooltips. Hyperlinks redirect students to webpages containing additional information both in English and in Italian, while tooltips show Italian equivalents of English technical terms. The exercise creation activity and the discussion forum foster interaction and collaboration among students, according to socio-constructivist principles. In the exercise creation activity, students collaboratively create a workbook, which allow them to deeply analyze and master the contents of the hypertextbook and at the same time create a learning tool that can help them, as well as future students, to enhance learning. In the discussion forum students can discuss their individual issues, content-related, English-related or e-learning environment-related, helping one other and offering instructors suggestions on how to improve both the hypertextbook and the workbook based on their needs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.