3 resultados para Eddy Current Testing
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Sub-grid scale (SGS) models are required in order to model the influence of the unresolved small scales on the resolved scales in large-eddy simulations (LES), the flow at the smallest scales of turbulence. In the following work two SGS models are presented and deeply analyzed in terms of accuracy through several LESs with different spatial resolutions, i.e. grid spacings. The first part of this thesis focuses on the basic theory of turbulence, the governing equations of fluid dynamics and their adaptation to LES. Furthermore, two important SGS models are presented: one is the Dynamic eddy-viscosity model (DEVM), developed by \cite{germano1991dynamic}, while the other is the Explicit Algebraic SGS model (EASSM), by \cite{marstorp2009explicit}. In addition, some details about the implementation of the EASSM in a Pseudo-Spectral Navier-Stokes code \cite{chevalier2007simson} are presented. The performance of the two aforementioned models will be investigated in the following chapters, by means of LES of a channel flow, with friction Reynolds numbers $Re_\tau=590$ up to $Re_\tau=5200$, with relatively coarse resolutions. Data from each simulation will be compared to baseline DNS data. Results have shown that, in contrast to the DEVM, the EASSM has promising potentials for flow predictions at high friction Reynolds numbers: the higher the friction Reynolds number is the better the EASSM will behave and the worse the performances of the DEVM will be. The better performance of the EASSM is contributed to the ability to capture flow anisotropy at the small scales through a correct formulation for the SGS stresses. Moreover, a considerable reduction in the required computational resources can be achieved using the EASSM compared to DEVM. Therefore, the EASSM combines accuracy and computational efficiency, implying that it has a clear potential for industrial CFD usage.
Resumo:
Linear cascade testing serves a fundamental role in the research, development, and design of turbomachines as it is a simple yet very effective way to compute the performance of a generic blade geometry. These kinds of experiments are usually carried out in specialized wind tunnel facilities. This thesis deals with the numerical characterization and subsequent partial redesign of the S-1/C Continuous High Speed Wind Tunnel of the Von Karman Institute for Fluid Dynamics. The current facility is powered by a 13-stage axial compressor that is not powerful enough to balance the energy loss experienced when testing low turning airfoils. In order to address this issue a performance assessment of the wind tunnel was performed under several flow regimes via numerical simulations. After that, a redesign proposal aimed at reducing the pressure loss was investigated. This consists of a linear cascade of turning blades to be placed downstream of the test section and designed specifically for the type of linear cascade being tested. An automatic design procedure was created taking as input parameters those measured at the outlet of the cascade. The parametrization method employed Bézier curves to produce an airfoil geometry that could be imported into a CAD software so that a cascade could be designed. The proposal was simulated via CFD analysis and proved to be effective in reducing pressure losses up to 41%. The same tool developed in this thesis could be adopted to design similar apparatuses and could also be optimized and specialized for the design of turbomachines components.
Resumo:
The quantity of electric energy utilized by a home, a business, or an electrically powered device is measured by an electricity meter, also known as an electric meter, electrical meter, or energy meter. Electric meters located at customers' locations are used by electric providers for billing. They are usually calibrated in billing units, with the kilowatt hour being the most popular (kWh). Typically, they are read once each billing cycle. When energy savings are sought during specific times, some meters may monitor demand, or the highest amount of electricity used during a specific time. Additionally, some meters feature relays for load shedding in response to responses during periods of peak load. The amount of electrical energy consumed by users is measured by a Watt-hour meter, also known as an energy meter. To charge the electricity usage by loads like lights, fans, and other appliances, utilities put these gadgets everywhere, including in households, businesses, and organizations. Watts are a fundamental power unit. A kilowatt is equal to one thousand watts. One kilowatt is regarded as one unit of energy used if used for one hour. These meters calculate the product of the instantaneous voltage and current readings and provide instantaneous power. This power is distributed over a period and is used during that time. Depending on the supply used by home or commercial installations, these may be single or three phase meters. These can be linked directly between line and load for minor service measurements, such as home consumers. However, step-down current transformers must be installed for greater loads to handle their higher current demands.