18 resultados para EEG, fMRI, sinestesia
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’obiettivo della mia tesi è quello di presentare e confrontare due tipologie di tecniche di indagine cerebrale, l’EEG (Elettroencefalogramma) e la fMRI (Risonanza Magnetica funzionale), evidenziandone i vantaggi e gli svantaggi, e le loro applicazioni in campo medico. Successivamente è presentato lo sviluppo di un modello sperimentale volto allo studio del fenomeno della sinestesia, a partire da dati estratti mediante le tecniche precedenti.
Resumo:
Argomento del presente lavoro è l’analisi di dati fMRI (functional Magnetic Resonance Imaging) nell’ambito di uno studio EEG-fMRI su pazienti affetti da malattia di Parkinson idiopatica. L’EEG-fMRI combina due diverse tecniche per lo studio in vivo dell’attività cerebrale: l'elettroencefalografia (EEG) e la risonanza magnetica funzionale. La prima registra l’attività elettrica dei neuroni corticali con ottima risoluzione temporale; la seconda misura indirettamente l’attività neuronale registrando gli effetti metabolici ad essa correlati, con buona risoluzione spaziale. L’acquisizione simultanea e la combinazione dei due tipi di dati permettono di sfruttare i vantaggi di ciascuna tecnica. Scopo dello studio è l’indagine della connettività funzionale cerebrale in condizioni di riposo in pazienti con malattia di Parkinson idiopatica ad uno stadio precoce. In particolare, l’interesse è focalizzato sulle variazioni della connettività con aree motorie primarie e supplementari in seguito alla somministrazione della terapia dopaminergica. Le quattro fasi principali dell’analisi dei dati sono la correzione del rumore fisiologico, il pre-processing usuale dei dati fMRI, l’analisi di connettività “seed-based “ e la combinazione dei dati relativi ad ogni paziente in un’analisi statistica di gruppo. Usando ’elettrocardiogramma misurato contestualmente all’EEG ed una stima dell’attività respiratoria, è stata effettuata la correzione del rumore fisiologico, ottenendo risultati consistenti con la letteratura. L’analisi di connettività fMRI ha mostrato un aumento significativo della connettività dopo la somministrazione della terapia: in particolare, si è riscontrato che le aree cerebrali maggiormente connesse alle aree motorie sono quelle coinvolte nel network sensorimotorio, nel network attentivo e nel default mode network. Questi risultati suggeriscono che la terapia dopaminergica, oltre ad avere un effetto positivo sulle performance motorie durante l’esecuzione del movimento, inizia ad agire anche in condizioni di riposo, migliorando le funzioni attentive ed esecutive, componenti integranti della fase preparatoria del movimento. Nel prossimo futuro questi risultati verranno combinati con quelli ottenuti dall’analisi dei dati EEG.
Resumo:
Background: l’epilessia è una malattia cerebrale che colpisce oggigiorno circa l’1% della popolazione mondiale e causa, a chi ne soffre, convulsioni ricorrenti e improvvise che danneggiano la vita quotidiana del paziente. Le convulsioni sono degli eventi che bloccano istantaneamente la normale attività cerebrale; inoltre differiscono tra i pazienti e, perciò, non esiste un trattamento comune generalizzato. Solitamente, medici neurologi somministrano farmaci, e, in rari casi, l’epilessia è trattata con operazioni neurochirurgiche. Tuttavia, le operazioni hanno effetti positivi nel ridurre le crisi, ma raramente riescono a eliminarle del tutto. Negli ultimi anni, nel campo della ricerca scientifica è stato provato che il segnale EEG contiene informazioni utili per diagnosticare l'arrivo di un attacco epilettico. Inoltre, diversi algoritmi automatici sono stati sviluppati per rilevare automaticamente le crisi epilettiche. Scopo: lo scopo finale di questa ricerca è l'applicabilità e l'affidabilità di un dispositivo automatico portatile in grado di rilevare le convulsioni e utilizzabile come sistema di monitoraggio. L’analisi condotta in questo progetto, è eseguita con tecniche di misure classiche e avanzate, in modo tale da provare tecnicamente l’affidabilità di un tale sistema. La comparazione è stata eseguita sui segnali elettroencefalografici utilizzando due diversi sistemi di acquisizione EEG: il metodo standard utilizzato nelle cliniche e il nuovo dispositivo portatile. Metodi: è necessaria una solida validazione dei segnali EEG registrati con il nuovo dispositivo. I segnali saranno trattati con tecniche classiche e avanzate. Dopo le operazioni di pulizia e allineamento, verrà utilizzato un nuovo metodo di rappresentazione e confronto di segnali : Bump model. In questa tesi il metodo citato verrà ampiamente descritto, testato, validato e adattato alle esigenze del progetto. Questo modello è definito come un approccio economico per la mappatura spazio-frequenziale di wavelet; in particolare, saranno presenti solo gli eventi con un’alta quantità di energia. Risultati: il modello Bump è stato implementato come toolbox su MATLAB dallo sviluppatore F. Vialatte, e migliorato dall’Autore per l’utilizzo di registrazioni EEG da sistemi diversi. Il metodo è validato con segnali artificiali al fine di garantire l’affidabilità, inoltre, è utilizzato su segnali EEG processati e allineati, che contengono eventi epilettici. Questo serve per rilevare la somiglianza dei due sistemi di acquisizione. Conclusioni: i risultati visivi garantiscono la somiglianza tra i due sistemi, questa differenza la si può notare specialmente comparando i grafici di attività background EEG e quelli di artefatti o eventi epilettici. Bump model è uno strumento affidabile per questa applicazione, e potrebbe essere utilizzato anche per lavori futuri (ad esempio utilizzare il metodo di Sincronicità Eventi Stocas- tici SES) o differenti applicazioni, così come le informazioni estratte dai Bump model potrebbero servire come input per misure di sincronicità, dalle quali estrarre utili risultati.
Resumo:
Il lavoro che ho sviluppato presso l'unità di RM funzionale del Policlinico S.Orsola-Malpighi, DIBINEM, è incentrato sull'analisi dati di resting state - functional Magnetic Resonance Imaging (rs-fMRI) mediante l'utilizzo della graph theory, con lo scopo di valutare eventuali differenze in termini di connettività cerebrale funzionale tra un campione di pazienti affetti da Nocturnal Frontal Lobe Epilepsy (NFLE) ed uno di controlli sani. L'epilessia frontale notturna è una peculiare forma di epilessia caratterizzata da crisi che si verificano quasi esclusivamente durante il sonno notturno. Queste sono contraddistinte da comportamenti motori, prevalentemente distonici, spesso complessi, e talora a semiologia bizzarra. L'fMRI è una metodica di neuroimaging avanzata che permette di misurare indirettamente l'attività neuronale. Tutti i soggetti sono stati studiati in condizioni di resting-state, ossia di veglia rilassata. In particolare mi sono occupato di analizzare i dati fMRI con un approccio innovativo in campo clinico-neurologico, rappresentato dalla graph theory. I grafi sono definiti come strutture matematiche costituite da nodi e links, che trovano applicazione in molti campi di studio per la modellizzazione di strutture di diverso tipo. La costruzione di un grafo cerebrale per ogni partecipante allo studio ha rappresentato la parte centrale di questo lavoro. L'obiettivo è stato quello di definire le connessioni funzionali tra le diverse aree del cervello mediante l'utilizzo di un network. Il processo di modellizzazione ha permesso di valutare i grafi neurali mediante il calcolo di parametri topologici che ne caratterizzano struttura ed organizzazione. Le misure calcolate in questa analisi preliminare non hanno evidenziato differenze nelle proprietà globali tra i grafi dei pazienti e quelli dei controlli. Alterazioni locali sono state invece riscontrate nei pazienti, rispetto ai controlli, in aree della sostanza grigia profonda, del sistema limbico e delle regioni frontali, le quali rientrano tra quelle ipotizzate essere coinvolte nella fisiopatologia di questa peculiare forma di epilessia.
Resumo:
Nel presente lavoro di tesi è stato sviluppato e testato un sistema BCI EEG-based che sfrutta la modulazione dei ritmi sensorimotori tramite immaginazione motoria della mano destra e della mano sinistra. Per migliorare la separabilità dei due stati mentali, in questo lavoro di tesi si è sfruttato l'algoritmo CSP (Common Spatial Pattern), in combinazione ad un classificatore lineare SVM. I due stati mentali richiesti sono stati impiegati per controllare il movimento (rotazione) di un modello di arto superiore a 1 grado di libertà, simulato sullo schermo. Il cuore del lavoro di tesi è consistito nello sviluppo del software del sistema BCI (basato su piattaforma LabVIEW 2011), descritto nella tesi. L'intero sistema è stato poi anche testato su 4 soggetti, per 6 sessioni di addestramento.
Resumo:
I neuroni in alcune regioni del nostro cervello mostrano una risposta a stimoli multisensoriali (ad es. audio-visivi) temporalmente e spazialmente coincidenti maggiore della risposta agli stessi stimoli presi singolarmente (integrazione multisensoriale). Questa abilità può essere sfruttata per compensare deficit unisensoriali, attraverso training multisensoriali che promuovano il rafforzamento sinaptico all’interno di circuiti comprendenti le regioni multisensoriali stimolate. Obiettivo della presente tesi è stato quello di studiare quali strutture e circuiti possono essere stimolate e rinforzate da un training multisensoriale audio-visivo. A tale scopo, sono stati analizzati segnali elettroencefalografici (EEG) registrati durante due diversi task di discriminazione visiva (discriminazione della direzione di movimento e discriminazione di orientazione di una griglia) eseguiti prima e dopo un training audio-visivo con stimoli temporalmente e spazialmente coincidenti, per i soggetti sperimentali, o spazialmente disparati, per i soggetti di controllo. Dai segnali EEG di ogni soggetto è stato ricavato il potenziale evento correlato (ERP) sullo scalpo, di cui si è analizzata la componente N100 (picco in 140÷180 ms post stimolo) verificandone variazioni pre/post training mediante test statistici. Inoltre, è stata ricostruita l’attivazione delle sorgenti corticali in 6239 voxel (suddivisi tra le 84 ROI coincidenti con le Aree di Brodmann) con l’ausilio del software sLORETA. Differenti attivazioni delle ROI pre/post training in 140÷180 ms sono state evidenziate mediante test statistici. I risultati suggeriscono che il training multisensoriale abbia rinforzato i collegamenti sinaptici tra il Collicolo Superiore e il Lobulo Parietale Inferiore (nell’area Area di Brodmann 7), una regione con funzioni visuo-motorie e di attenzione spaziale.
Resumo:
Lo scopo di questa trattazione è quindi di illustrare il lavoro svolto nel tentativo di classificare le reazioni emozionali ad immagini con una forte carica emozionale, sia positiva che negativa. A tale scopo sono stati acquisiti i segnali EEG di diversi soggetti durante l’esposizione ad immagini di vario contenuto, insieme alla loro reazione dichiarata alle immagini stesse. Queste sono state immagazzinate, elaborate utilizzando diversi metodi di estrazione delle informazioni, ed infine si è tentato di effettuare un riconoscimento di pattern sui segnali tramite algoritmi di apprendimento supervisionato; i dati sono stati quindi divisi tra dati di “training”, utilizzati per la strutturazione dell’algoritmo, e dati di test, necessari per la verifica dell’affidabilità dell’algoritmo.
Resumo:
Negli ultimi anni la teoria dei network è stata applicata agli ambiti più diversi, mostrando proprietà caratterizzanti tutti i network reali. In questo lavoro abbiamo applicato gli strumenti della teoria dei network a dati cerebrali ottenuti tramite MRI funzionale “resting”, provenienti da due esperimenti. I dati di fMRI sono particolarmente adatti ad essere studiati tramite reti complesse, poiché in un esperimento si ottengono tipicamente più di centomila serie temporali per ogni individuo, da più di 100 valori ciascuna. I dati cerebrali negli umani sono molto variabili e ogni operazione di acquisizione dati, così come ogni passo della costruzione del network, richiede particolare attenzione. Per ottenere un network dai dati grezzi, ogni passo nel preprocessamento è stato effettuato tramite software appositi, e anche con nuovi metodi da noi implementati. Il primo set di dati analizzati è stato usato come riferimento per la caratterizzazione delle proprietà del network, in particolare delle misure di centralità, dal momento che pochi studi a riguardo sono stati condotti finora. Alcune delle misure usate indicano valori di centralità significativi, quando confrontati con un modello nullo. Questo comportamento `e stato investigato anche a istanti di tempo diversi, usando un approccio sliding window, applicando un test statistico basato su un modello nullo pi`u complesso. Il secondo set di dati analizzato riguarda individui in quattro diversi stati di riposo, da un livello di completa coscienza a uno di profonda incoscienza. E' stato quindi investigato il potere che queste misure di centralità hanno nel discriminare tra diversi stati, risultando essere dei potenziali bio-marcatori di stati di coscienza. E’ stato riscontrato inoltre che non tutte le misure hanno lo stesso potere discriminante. Secondo i lavori a noi noti, questo `e il primo studio che caratterizza differenze tra stati di coscienza nel cervello di individui sani per mezzo della teoria dei network.
Resumo:
La decodifica dei segnali elettroencefalografici (EEG) consiste nell’analisi del segnale per classificare le azioni o lo stato cognitivo di un soggetto. Questi studi possono permettere di comprendere meglio i correlati neurali alla base del movimento, oltre che avere un’applicazione pratica nelle Brain Computer Interfaces. In questo ambito, di rilievo sono le reti neurali convoluzionali (Convolutional Neural Networks, CNNs), che grazie alle loro elevate performance stanno acquisendo importanza nella decodifica del segnale EEG. In questo elaborato di tesi è stata addestrata una CNN precedentemente proposta in letteratura, EEGNet, per classificare i segnali EEG acquisiti durante movimenti di reaching del braccio dominante, sulla base della posizione del target da raggiungere. I dati sono stati acquisiti su dieci soggetti grazie al protocollo sviluppato in questo lavoro, in cui 5 led disposti su una semicirconferenza rappresentano i target del movimento e l’accensione casuale di un led identifica il target da raggiungere in ciascuna prova. I segnali EEG acquisiti sono stati quindi ricampionati, filtrati e suddivisi in epoche di due secondi attorno all’inizio di ciascun movimento, rimuovendo gli artefatti oculari mediante ICA. La rete è stata valutata in tre task di classificazione, uno a cinque classi (una posizione target per classe) e due a tre classi (raggruppando più posizioni target per classe). Per ogni task, la rete è stata addestrata in cross-validazione utilizzando un approccio within-subject. Con questo approccio sono state addestrate e validate 15 CNNs diverse per ogni soggetto. Infine, è stato calcolato l’F1 score per ciascun task di classificazione, mediando i risultati sui soggetti, per valutare quantitativamente le performance della CNN che sono risultati migliori nel classificare target disposti a destra e a sinistra.
Resumo:
Il miglioramento dell'assistenza e dei risultati dei pazienti si basano attualmente sullo sviluppo e sulla convalida di nuovi farmaci e tecnologie, soprattutto in campi in rapida evoluzione come la Cardiologia Interventistica. Tuttavia, al giorno d’oggi ancora poca attenzione è rivolta ai professionisti che effettuano tali operazioni, il cui sforzo cognitivo-motorio è essenziale per la riuscita degli interventi. L’ottimizzazione delle prestazioni e dell'organizzazione del lavoro è essenziale in quanto influisce sul carico di lavoro mentale dell'operatore e può determinare l'efficacia dell'intervento e l'impatto sulla prognosi dei pazienti. È stato ampiamente dimostrato che diverse funzioni cognitive, tra cui l'affaticamento mentale comporta alcuni cambiamenti nei segnali elettroencefalografici. Vi sono diversi marcatori dei segnali EEG ciascuno con una determinata ampiezza, frequenza e fase che permettono di comprendere le attività cerebrali. Per questo studio è stato utilizzato un modello di analisi spettrale elettroencefalografica chiamato Alpha Prevalence (AP), che utilizza le tre onde alpha, beta e theta, per mettere in correlazione i processi cognitivi da un lato e le oscillazioni EEG dall’altro. Questo elaborato, condotto insieme all’azienda Vibre, prende in esame il cambiamento dell’AP, all’interno di una popolazione di cardiologi interventisti che effettuano interventi in cath-lab presso l’ospedale universitario di Ferrara, per valutare la condizione di affaticamento mentale o di eccessiva sonnolenza. L’esperimento prevede la registrazione del segnale EEG nei partecipanti volontari durante gli interventi e durante le pause nel corso dell’intero turno di lavoro. Lo scopo sarà quello di rilevare i cambiamenti nella metrica dell’alpha prevalence al variare del carico attentivo: ossia al variare delle risorse attentive richieste dal compito in relazione all’aumentare del tempo.
Resumo:
The amplitude of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) shows a large variability from trial to trial, although MEPs are evoked by the same repeated stimulus. A multitude of factors is believed to influence MEP amplitudes, such as cortical, spinal and motor excitability state. The goal of this work is to explore to which degree the variation in MEP amplitudes can be explained by the cortical state right before the stimulation. Specifically, we analyzed a dataset acquired on eleven healthy subjects comprising, for each subject, 840 single TMS pulses applied to the left M1 during acquisition of electroencephalography (EEG) and electromyography (EMG). An interpretable convolutional neural network, named SincEEGNet, was utilized to discriminate between low- and high-corticospinal excitability trials, defined according to the MEP amplitude, using in input the pre-TMS EEG. This data-driven approach enabled considering multiple brain locations and frequency bands without any a priori selection. Post-hoc interpretation techniques were adopted to enhance interpretation by identifying the more relevant EEG features for the classification. Results show that individualized classifiers successfully discriminated between low and high M1 excitability states in all participants. Outcomes of the interpretation methods suggest the importance of the electrodes situated over the TMS stimulation site, as well as the relevance of the temporal samples of the input EEG closer to the stimulation time. This novel decoding method allows causal investigation of the cortical excitability state, which may be relevant for personalizing and increasing the efficacy of therapeutic brain-state dependent brain stimulation (for example in patients affected by Parkinson’s disease).
Resumo:
Alpha oscillatory activity has long been associated with perceptual and cognitive processes related to attention control. The aim of this study is to explore the task-dependent role of alpha frequency in a lateralized visuo-spatial detection task. Specifically, the thesis focuses on consolidating the scientific literature's knowledge about the role of alpha frequency in perceptual accuracy, and deepening the understanding of what determines trial-by-trial fluctuations of alpha parameters and how these fluctuations influence overall task performance. The hypotheses, confirmed empirically, were that different implicit strategies are put in place based on the task context, in order to maximize performance with optimal resource distribution (namely alpha frequency, associated positively with performance): “Lateralization” of the attentive resources towards one hemifield should be associated with higher alpha frequency difference between contralateral and ipsilateral hemisphere; “Distribution” of the attentive resources across hemifields should be associated with lower alpha frequency difference between hemispheres; These strategies, used by the participants according to their brain capabilities, have proven themselves adaptive or maladaptive depending on the different tasks to which they have been set: "Distribution" of the attentive resources seemed to be the best strategy when the distribution probability between hemifields was balanced: i.e. the neutral condition task. "Lateralization" of the attentive resources seemed to be more effective when the distribution probability between hemifields was biased towards one hemifield: i.e., the biased condition task.
Resumo:
I recenti sviluppi nel campo dell’intelligenza artificiale hanno permesso una più adeguata classificazione del segnale EEG. Negli ultimi anni è stato dimostrato come sia possibile ottenere ottime performance di classificazione impiegando tecniche di Machine Learning (ML) e di Deep Learning (DL), facendo uso, per quest’ultime, di reti neurali convoluzionali (Convolutional Neural Networks, CNN). In particolare, il Deep Learning richiede molti dati di training mentre spesso i dataset per EEG sono limitati ed è difficile quindi raggiungere prestazioni elevate. I metodi di Data Augmentation possono alleviare questo problema. Partendo da dati reali, questa tecnica permette, la creazione di dati artificiali fondamentali per aumentare le dimensioni del dataset di partenza. L’applicazione più comune è quella di utilizzare i Data Augmentation per aumentare le dimensioni del training set, in modo da addestrare il modello/rete neurale su un numero di campioni più esteso, riducendo gli errori di classificazione. Partendo da questa idea, i Data Augmentation sono stati applicati in molteplici campi e in particolare per la classificazione del segnale EEG. In questo elaborato di tesi, inizialmente, vengono descritti metodi di Data Augmentation implementati nel corso degli anni, utilizzabili anche nell’ambito di applicazioni EEG. Successivamente, si presentano alcuni studi specifici che applicano metodi di Data Augmentation per migliorare le presentazioni di classificatori basati su EEG per l’identificazione dello stato sonno/veglia, per il riconoscimento delle emozioni, e per la classificazione di immaginazione motoria.
Resumo:
La valutazione del segnale elettroencefalografico acquisito durante compiti di Working Memory è utile per indagare regioni e meccanismi cerebrali alla base della capacità di immagazzinare le informazioni provenienti dall’ambiente rilevanti per il task da svolgere e di inibire stimoli irrilevanti/distraenti. In questo lavoro di Tesi è stato condotto uno studio su 13 volontari che hanno svolto un compito di memoria di lavoro visiva, consistente di prove ripetute (trial) ognuna composta di diverse fasi: Encoding (memorizzazione del memory set), Retention (mantenimento in memoria) in cui si mostra un distrattore, che può essere weak (poco interferente) o strong (maggiormente interferente). Ciascun trial termina con la comparsa della Probe, a cui il soggetto deve rispondere indicando se apparteneva o meno al memory set. Durante il task è stato acquisito il segnale EEG da 64 elettrodi, ed analizzato per indagare i potenziali evocati (ERPs) e la sincronizzazione/desincronizzazione in banda alpha (8-12 Hz) e theta (4-8 Hz) correlata agli stimoli visivi; è stata svolta anche un’analisi preliminare ricostruendo l’attività delle sorgenti corticali dal segnale EEG. Dalle analisi emerge che gli ERPs sono visibili principalmente nelle fasi di Encoding e Distractor, e nelle regioni fronto-centrali e parieto-occipitali, e che nella fase di Distractor sono maggiori per distrattore weak rispetto a strong. Si conferma la natura inibitoria del ritmo alpha e il ruolo del ritmo theta nei processi cognitivi; infatti la potenza in banda alpha aumenta nella fase pre-distrattore (sia weak che strong) e la potenza in banda theta è sostenuta durante l’intero task. Non si osservano differenze in banda alpha e theta tra i due distrattori nella fase pre-distrattore, mentre si osserva una modulazione durante la presentazione del distrattore.