1 resultado para Dyson, Matt

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sono rari i problemi risolubili in maniera esatta in meccanica quantistica. Ciò è legato alle difficoltà matemtiche insite nella teoria dei quanti. Inoltre i problemi risolti, pur essendo in alcuni casi delle ottime approssimazioni, sono spesso delle astrazioni delle situazioni reali. Si pensi ad esempio al caso di una particella quantistica di un problema unidimensionale. Questi sistemi sono talmente astratti da violare un principio fondamentale, il principio di indetermi- nazione. Infatti le componenti dell’impulso e della posizione perpendicolari al moto sono nulle e quindi sono note con certezza ad ogni istante di tempo. Per poter ottenere una descrizione dei modelli che tendono alla realtà è necessario ricorrere alle tecniche di approssimazione. In questa tesi sono stati considerati i fenomeni che coinvolgono una interazione variabile nel tempo. In particolare nella prima parte è stata sviluppata la teoria delle rappresentazioni della meccanica quantistica necessaria per la definizione della serie di Dyson. Questa serie oper- atoriale dovrebbe convergere (il problema della convergenza non è banale) verso l’operatore di evoluzione temporale, grazie al quale è possibile conoscere come un sistema evolve nel tempo. Quindi riuscire a determinare la serie di Dyson fino ad un certo ordine costituisce una soluzione approssimata del problema in esame. Supponiamo che sia possibile scomporre l’hamiltoniana di un sistema fisico nella somma di due termini del tipo: H = H0 + V (t), dove V (t) è una piccola perturbazione dipendente dal tempo di un problema risolubile esattamente caratterizzato dall’hamiltoniana H0 . In tal caso sono applicabili i metodi della teoria perturbativa dipendente dal tempo. Sono stati considerati due casi limite, ovvero il caso in cui lo spettro dell’hamiltoniana imperturbata sia discreto e non degenere ed il caso in cui lo spettro sia continuo. La soluzione al primo ordine del caso discreto è stata applicata per poter formu- lare il principio di indeterminazione energia-tempo e per determinare le regole di selezione in approssimazione di dipolo elettrico. Il secondo caso è servito per spiegare il decadimento beta, rimanendo nel campo della teoria quantistica classica (per una trattazione profonda del problema sarebbe necessaria la teoria dei campi).