3 resultados para Dough rheology
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This report studied the effect of crumb rubber in the asphalt mixture. The mixtures were also having limestone filler as a modifier. Mastic and mortar (mastic-fine aggregate system) mixture having different quantities of crumb rubber and limestone filler modifiers have been tested in order to find the best rutting resistance combination with an acceptable stiffness. The rheological tests on bituminous mastics and mortars have done in the laboratories in Nottingham Transport Engineering Centre (NTEC) and University of Bologna (DICAM). In the second chapter, an extensive literature review about the binders, additives, asphalt mixtures, various modelling and testing methods have been reviewed. In the third chapter, the physical and rheological properties of the binders have been investigated using both traditional devices and DSRs. The forth chapter is dedicated to finding the behaviour of the modified mastics (Binder-modifier system) with different combinations. Five different combinations of crumb rubber and limestone filler mastic tested with various methods using Dynamic Shear Rheometers. In the fifth chapter, in order to find the effect of the modifiers in the rheological properties of the complete asphalt mixture, the fine aggregates added to the same mastic combinations. In this phase, the behaviour of the system so-called mortar; binder, rubber, filler and fine aggregates) has been studied using the DSR device and the traditional tests. The results show that using fine crumb rubber reduces the thermo sensibility of the mastic (Binder Bitumen System) and improves its elasticity. Limestone filler in the other hand increases the mixture stiffness at high Frequencies. Another important outcome of this research was that the rheological properties of the mortars were following the same trend of the mastics, therefore study the rheological properties of the mastic gives an upright estimation of the mortar.
Resumo:
The waterproofing of hydraulic structure is done traiditionally like laying road on dam surface but with specific modified binders. An italian firm recently patented a new method that is re-adaptation of typical surface treatment of roads. The purpose of this study is to find out best aggregate-bitumen mixture that can perform well under service conditions of a large hydraulic structure such as dams. So, 4 different hard modified bitumen were tested with 2 aggregate types i.e. limestone and basalt. The experimental program contained the testing of bitumen aggregate adhesion, using the rolling bottle test and rheology of hard modified binders using multiple stress creep and recovery test and dynamic viscosity test. The results and discussion are presented in detail in this work.
Resumo:
The rising of concerns around the scarcity of non-renewable resources has raised curiosity around new frontiers in the polymer science field. Biopolymers is a general term describing different kind of polymers that are linked with the biological world because of either monomer derivation, end of life degradation or both. The current work is aimed at studying one example of both biopolymers types. Polyhydroxibutyrate (P3HB) is a biodegradable microbial-produced polymer which holds massive potentiality as a substitute of polyolefins such as polypropylene. Though, its highly crystalline nature and stereoregularity of structure make it difficult to work with. The project P3HB-Mono take advantage of polarized Raman spectroscopy to see how annealing of chains with different weights influence the crystallinity and molecular structure of the polymer, eventually reflecting on its mechanical properties. The technique employed is also optimal in order to see how mesophase, a particular conformation of chains different from crystalline and amorphous phase, develops in the polymer structure and changes depending on temperature and mechanical stress applied to the fiber. Polycaprolactone (PCL) on the other hand is a biodegradable fossil-fuel polymer which has biocompatibility and bio-resorbability features. As a consequence this material is very appealing for medical industry and can be used for different applications in this field. One interesting option is to produce narrow and long liquid filled fibers for drug delivery inside human body, using a traditional technique in an innovative way. The project BioLiCoF investigates the feasability of producing liquid filled fibers using melt-spinning techniques and will examine the role that melt-spinning parameters and liquids employed as a core solution have on the final fiber. The physical analysis of the fibers is also interpreted and idea on future developments of the trials are suggested.