3 resultados para Diversity management

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Approfondimento sul fenomeno dell'imprenditoria immigrata, della figura del migrante imprenditore e del cambiamento del ruolo di questo soggetto all'interno della società. Inoltre, si fa riferimento al fenomeno migratorio europeo, alle politiche di integrazione ed alcune tipologie di permessi di soggiorno. Focus sul diversity management nel contesto aziendale e studio di un caso locale della provincia di Forlì, con un'analisi della Cooperativa sociale DiaLogos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elasmobranchs are an important by-catch of commercial fisheries targeting bony fishes. Fisheries targeting sharks are rare, but usually almost all specimen bycatched are marketed. They risk extinction if current fishing pressure continues (Ferretti et al., 2008). Accurate species identification is critical for the design of sustainable fisheries and appropriate management plans, especially since not all species are equally sensitive to fishing pressure (Walker & Hislop 1998). The identification of species constitutes the first basic step for biodiversity monitoring and conservation (Dayrat B et al., 2005). More recently, mtDNA sequencing has also been used for species identification and its use has become widespread under the DNA Barcode initiative (e.g. Hebert et al. 2003a, 2003b; Ward et al. 2005, 2008a; Moura et al 2008; Steinke et al. 2009). The aims of this work were: 1) identify sharks and skates species using DNA barcode; 2) compare species of different provenance; 3) use DNA barcode for misidentified species. Using DNA barcode 15 species of sharks (Alopias vulpinus, Centrophorus granulosus, Cetorhinus maximus, Dalatias licha, Etmopterus spinax, Galeorhinus galeus, Galeus melastomus, Heptranchias perlo, Hexanchus griseus, Mustelus mustelus, Mustelus punctulatus, Oxynotus centrina, Scyliorhinus canicula Squalus acanthias, Squalus blainville), 1 species of chimaera (Chimaera monstrosa) and 21 species of rays/skayes (Dasyatis centroura, Dasyatis pastinaca, Dasyatis sp., Dipturus nidarosiensis, Dipturus oxyrinchus, Leucoraja circularis, Leucoraja melitensis, Myliobatis aquila, Pteromylaeus bovinus, Pteroplatytrygon violacea, Raja asterias, Raja brachyura, Raja clavata, Raja miraletus, Raja montagui, Raja radula, Raja polystigma, Raja undulata, Rostroraja alba, Torpedo marmorata, Torpedo nobiliana, Torpedo torpedo) was identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is on albacore (Thunnus alalunga, Bonnaterre 1788), an epi- and mesopelagic oceanic tuna species cosmopolitan in the tropical and temperate waters of all oceans including the Mediterranean Sea, extending in a broad band between 40°N and 40°S. What it’s known about albacore population structure is based on different studies that used fisheries data, RFLP, mtDNA control region and nuDNA markers, blood lectins analysis, individual tags and microsatellite. At the moment, for T. alalunga six management units are recognized: the North Pacific, South Pacific, Indian, North Atlantic, South Atlantic and Mediterranean stocks. In this study I have done a temporal and spatial comparison of genetic variability between different Mediterranean populations of Thunnus alalunga matching an historical dataset ca. from 1920s composed of 43 individuals divided in 3 populations (NADR, SPAIN and CMED) with a modern dataset composed of 254 individuals and 7 populations (BAL, CYP, LIG, TYR, TUR, ADR, ALB). The investigation was possible using a panel of 94 nuclear SNPs, built specifically for the target species at the University of Basque Country UPV/EHU. First analysis done was the Hardy-Weinberg, then the number of clusters (K) was determined using STRUCTURE and to assess the genetic variability, allele frequencies, the average number of alleles per locus, expected (He) and observed (Ho) heterozygosis, and the index of polymorphism (P) was used the software Genetix. Historical and modern samples gives different results, showing a clear loss of genetic diversity over time leading to a single cluster in modern albacore instead of the two found in historical samples. What this study reveals is very important for conservation concerns, and additional research endeavours are needed.