9 resultados para Distributed power control algorithm (DPCA)

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the study and the simulation of two advanced sensorless speed control techniques for a surface PMSM are presented. The aim is to implement a sensorless control algorithm for a submarine auxiliary propulsion system. This experimental activity is the result of a project collaboration with L3Harris Calzoni, a leader company in A&D systems for naval handling in military field. A Simulink model of the whole electric drive has been developed. Due to the satisfactory results of the simulations, the sensorless control system has been implemented in C code for STM32 environment. Finally, several tests on a real brushless machine have been carried out while the motor was connected to a mechanical load to simulate the real scenario of the final application. All the experimental results have been recorded through a graphical interface software developed at Calzoni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a tube-based Distributed Economic Predictive Control (DEPC) scheme is presented for a group of dynamically coupled linear subsystems. These subsystems are components of a large scale system and control inputs are computed based on optimizing a local economic objective. Each subsystem is interacting with its neighbors by sending its future reference trajectory, at each sampling time. It solves a local optimization problem in parallel, based on the received future reference trajectories of the other subsystems. To ensure recursive feasibility and a performance bound, each subsystem is constrained to not deviate too much from its communicated reference trajectory. This difference between the plan trajectory and the communicated one is interpreted as a disturbance on the local level. Then, to ensure the satisfaction of both state and input constraints, they are tightened by considering explicitly the effect of these local disturbances. The proposed approach averages over all possible disturbances, handles tightened state and input constraints, while satisfies the compatibility constraints to guarantee that the actual trajectory lies within a certain bound in the neighborhood of the reference one. Each subsystem is optimizing a local arbitrary economic objective function in parallel while considering a local terminal constraint to guarantee recursive feasibility. In this framework, economic performance guarantees for a tube-based distributed predictive control (DPC) scheme are developed rigorously. It is presented that the closed-loop nominal subsystem has a robust average performance bound locally which is no worse than that of a local robust steady state. Since a robust algorithm is applying on the states of the real (with disturbances) subsystems, this bound can be interpreted as an average performance result for the real closed-loop system. To this end, we present our outcomes on local and global performance, illustrated by a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing interest in the decarbonization process led to a rapidly growing trend of electrification strategies in the automotive industry. In particular, OEMs are pushing towards the development and production of efficient electric vehicles. Moreover, research on electric motors and their control are exploding in popularity. The increase of computational power in embedded control hardware is allowing the development of new control algorithm, such as sensorless control strategy. Such control strategy allows the reduction of the number of sensors, which implies reduced costs and increased system reliability. The thesis objective is to realize a sensorless control for high-performance automotive motors. Several algorithms for rotor angle observers are implemented in the MATLAB and Simulink environment, with emphasis on the Kalman observer. One of the Kalman algorithms already available in the literature has been selected, implemented and benchmarked, with emphasis on its comparison with the Sliding Mode observer. Different models characterized by increasing levels of complexity are simulated. A simplified synchronous motor with ”constant parameters”, controlled by an ideal inverter is first analyzed; followed by a complete model defined by real motor maps, and controlled by a switching inverter. Finally, it was possible to test the developed algorithm on a real electric motor mounted on a test bench. A wide range of different electric motors have been simulated, which led to an exhaustive review of the sensorless control algorithm. The final results underline the capability of the Kalman observer to effectively control the motor on a real test bench.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this thesis has been part of a Cranfield University research project. This thesis aims to design a flight control law for large cargo aircraft by using predictive control, which can assure flight motion along the flight path exactly and on time. In particular this work involves the modelling of a Boeing C-17 Globemaster III 6DOF model (used as study case), by using DATCOM and Matlab Simulink software. Then a predictive control algorithm has been developed. The majority of the work is done in a Matlab/Simulink environment. Finally the predictive control algorithm has been applied on the aircraft model and its performances, in tracking given trajectory optimized through a 4DT Research Software, have been evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the optimal operation of a neighborhood of smart households in terms of minimizing the total energy cost is analyzed. Each household may comprise several assets such as electric vehicles, controllable appliances, energy storage and distributed generation. Bi-directional power flow is considered for each household . Apart from the distributed generation unit, technological options such as vehicle-to-home and vehicle-to-grid are available to provide energy to cover self-consumption needs and to export excessive energy to other households, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella tesi viene svolto un lavoro di modellazione del protocollo MAC 802.15.4 Wireless Personal Area Network (WPAN), per reti di sensori; dopodiché esso viene sottoposto ad una serie di analisi energetiche attraverso simulazioni nell'ambiente OMNeT++. Numerosi sono i parametri che sono stati considerati per caratterizzare al meglio le analisi effettuate, nonché le diverse condizioni iniziali. Il profilo energetico ottenuto è stato messo a confronto con quello del protocollo 802.15.4m per TVWS. I dati ottenuti sono stati elaborati con un algoritmo power control con l'obiettivo di raggiungere la massima ottimizzazione energetica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partendo dallo sviluppo della teoria dell'apprendimento Hebbiano, si delinea un percorso per la creazione di robot in grado di apprendere tramite architettura DAC e Value System.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I moderni processori multi-core ad elevate prestazioni sono alimentati da regolatori di tensione integrati direttamente sul chip. Questi regolatori forniscono a ciascun power domain la tensione ottimale sulla base della sua attività, monitorata da una Power Control Unit. Questo consente da un lato di ottenere una riduzione dei consumi, dall'altro di avere un boost delle prestazioni in particolari contesti. Tali regolatori integrati sul die sono affetti da guasti e fenomeni di aging, che possono compromettere il corretto funzionamento del circuito. Questi problemi non sono tollerabili in contesti caratterizzati da esigenze di elevata reliability, come l'autonomous driving. Dunque, è stato sviluppato un monitor per rivelare on-line eventuali guasti che possono verificarsi durante il normale funzionamento sul campo. In caso di guasto il monitor è in grado di dare un'indicazione d'errore, che può essere utilizzata per attivare delle procedure di recovery. La soluzione proposta, basata su un approccio completamente differente rispetto a quello suggerito dallo standard ISO 26262, beneficia, rispetto a quest'ultima, di costi nettamente inferiori e prestazioni superiori. Il monitor può essere calibrato automaticamente per compensare le variazioni dei parametri di processo ed i fenomeni di aging che possono affliggere il monitor stesso. È stata verificata la self-checking ability del monitor rispetto a guasti di tipo transistor stuck-on, transistor stuck-open e bridging resistivo, risultando Totally Self-Checking rispetto all'insieme di guasti considerato.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hand gesture recognition based on surface electromyography (sEMG) signals is a promising approach for the development of intuitive human-machine interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG signal arises from the muscles' electrical activity, and can thus be used to recognize hand gestures. The decoding from sEMG signals to actual control signals is non-trivial; typically, control systems map sEMG patterns into a set of gestures using machine learning, failing to incorporate any physiological insight. This master thesis aims at developing a bio-inspired hand gesture recognition system based on neuromuscular spike extraction rather than on simple pattern recognition. The system relies on a decomposition algorithm based on independent component analysis (ICA) that decomposes the sEMG signal into its constituent motor unit spike trains, which are then forwarded to a machine learning classifier. Since ICA does not guarantee a consistent motor unit ordering across different sessions, 3 approaches are proposed: 2 ordering criteria based on firing rate and negative entropy, and a re-calibration approach that allows the decomposition model to retain information about previous sessions. Using a multilayer perceptron (MLP), the latter approach results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom scenario. Afterwards, the decomposition and classification pipeline for inference is parallelized and profiled on the PULP platform, achieving a latency < 50 ms and an energy consumption < 1 mJ. Both the classification models tested (a support vector machine and a lightweight MLP) yielded an accuracy > 92% in a 1-subject, 5-classes (4 gestures and rest) scenario. These results prove that the proposed system is suitable for real-time execution on embedded platforms and also capable of matching the accuracy of state-of-the-art approaches, while also giving some physiological insight on the neuromuscular spikes underlying the sEMG.