5 resultados para Distributed parameter networks
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis regards the Wireless Sensor Network (WSN), as one of the most important technologies for the twenty-first century and the implementation of different packet correcting erasure codes to cope with the ”bursty” nature of the transmission channel and the possibility of packet losses during the transmission. The limited battery capacity of each sensor node makes the minimization of the power consumption one of the primary concerns in WSN. Considering also the fact that in each sensor node the communication is considerably more expensive than computation, this motivates the core idea to invest computation within the network whenever possible to safe on communication costs. The goal of the research was to evaluate a parameter, for example the Packet Erasure Ratio (PER), that permit to verify the functionality and the behavior of the created network, validate the theoretical expectations and evaluate the convenience of introducing the recovery packet techniques using different types of packet erasure codes in different types of networks. Thus, considering all the constrains of energy consumption in WSN, the topic of this thesis is to try to minimize it by introducing encoding/decoding algorithms in the transmission chain in order to prevent the retransmission of the erased packets through the Packet Erasure Channel and save the energy used for each retransmitted packet. In this way it is possible extend the lifetime of entire network.
Resumo:
This thesis offers a practical and theoretical evaluations about gossip-epidemic algorithms, comparing those most common in the literature with new proposed algorithms and analyzing their behavior. Tests have been executed using one hundred graphs that has been randomly generated by Large Unstructured NEtwork Simulator (LUNES), a simulation software provided by Parallel and Distributed Simulation Research Group (PADS), of the Department of Computer Science, Università di Bologna and simulated using Advanced RTI System (ARTÌS), based on the High Level Architecture standard. Literatures algorithms have been analyzed and taken as base for new algorithms.
Resumo:
Cloud computing enables independent end users and applications to share data and pooled resources, possibly located in geographically distributed Data Centers, in a fully transparent way. This need is particularly felt by scientific applications to exploit distributed resources in efficient and scalable way for the processing of big amount of data. This paper proposes an open so- lution to deploy a Platform as a service (PaaS) over a set of multi- site data centers by applying open source virtualization tools to facilitate operation among virtual machines while optimizing the usage of distributed resources. An experimental testbed is set up in Openstack environment to obtain evaluations with different types of TCP sample connections to demonstrate the functionality of the proposed solution and to obtain throughput measurements in relation to relevant design parameters.
Resumo:
The spectrum of radiofrequency is distributed in such a way that it is fixed to certain users called licensed users and it cannot be used by unlicensed users even though the spectrum is not in use. This inefficient use of spectrum leads to spectral holes. To overcome the problem of spectral holes and increase the efficiency of the spectrum, Cognitive Radio (CR) was used and all simulation work was done on MATLAB. Here analyzed the performance of different spectrum sensing techniques as Match filter based spectrum sensing and energy detection, which depend on various factors, systems such as Numbers of input, signal-to-noise ratio ( SNR Ratio), QPSK system and BPSK system, and different fading channels, to identify the best possible channels and systems for spectrum sensing and improving the probability of detection. The study resulted that an averaging filter being better than an IIR filter. As the number of inputs and SNR increased, the probability of detection also improved. The Rayleigh fading channel has a better performance compared to the Rician and Nakagami fading channel.
Resumo:
Software Defined Networking along with Network Function Virtualisation have brought an evolution in the telecommunications laying out the bases for 5G networks and its softwarisation. The separation between the data plane and the control plane, along with having a decentralisation of the latter, have allowed to have a better scalability and reliability while reducing the latency. A lot of effort has been put into creating a distributed controller, but most of the solutions provided by now have a monolithic approach that reduces the benefits of having a software defined network. Disaggregating the controller and handling it as microservices is the solution to problems faced when working with a monolithic approach. Microservices enable the cloud native approach which is essential to benefit from the architecture of the 5G Core defined by the 3GPP standards development organisation. Applying the concept of NFV allows to have a softwarised version of the entire network structure. The expectation is that the 5G Core will be deployed on an orchestrated cloud infrastructure and in this thesis work we aim to provide an application of this concept by using Kubernetes as an implementation of the MANO standard. This means Kubernetes acts as a Network Function Virtualisation Orchestrator (NFVO), Virtualised Network Function Manager (VNFM) and Virtualised Infrastructure Manager (VIM) rather than just a Network Function Virtualisation Infrastructure. While OSM has been adopted for this purpose in various scenarios, this work proposes Kubernetes opposed to OSM as the MANO standard implementation.