4 resultados para Distributed artificial intelligence
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis examines the state of audiovisual translation (AVT) in the aftermath of the COVID-19 emergency, highlighting new trends with regards to the implementation of AI technologies as well as their strengths, constraints, and ethical implications. It starts with an overview of the current AVT landscape, focusing on future projections about its evolution and its critical aspects such as the worsening working conditions lamented by AVT professionals – especially freelancers – in recent years and how they might be affected by the advent of AI technologies in the industry. The second chapter delves into the history and development of three AI technologies which are used in combination with neural machine translation in automatic AVT tools: automatic speech recognition, speech synthesis and deepfakes (voice cloning and visual deepfakes for lip syncing), including real examples of start-up companies that utilize them – or are planning to do so – to localize audiovisual content automatically or semi-automatically. The third chapter explores the many ethical concerns around these innovative technologies, which extend far beyond the field of translation; at the same time, it attempts to revindicate their potential to bring about immense progress in terms of accessibility and international cooperation, provided that their use is properly regulated. Lastly, the fourth chapter describes two experiments, testing the efficacy of the currently available tools for automatic subtitling and automatic dubbing respectively, in order to take a closer look at their perks and limitations compared to more traditional approaches. This analysis aims to help discerning legitimate concerns from unfounded speculations with regards to the AI technologies which are entering the field of AVT; the intention behind it is to humbly suggest a constructive and optimistic view of the technological transformations that appear to be underway, whilst also acknowledging their potential risks.
Resumo:
While the use of distributed intelligence has been incrementally spreading in the design of a great number of intelligent systems, the field of Artificial Intelligence in Real Time Strategy games has remained mostly a centralized environment. Despite turn-based games have attained AIs of world-class level, the fast paced nature of RTS games has proven to be a significant obstacle to the quality of its AIs. Chapter 1 introduces RTS games describing their characteristics, mechanics and elements. Chapter 2 introduces Multi-Agent Systems and the use of the Beliefs-Desires-Intentions abstraction, analysing the possibilities given by self-computing properties. In Chapter 3 the current state of AI development in RTS games is analyzed highlighting the struggles of the gaming industry to produce valuable. The focus on improving multiplayer experience has impacted gravely on the quality of the AIs thus leaving them with serious flaws that impair their ability to challenge and entertain players. Chapter 4 explores different aspects of AI development for RTS, evaluating the potential strengths and weaknesses of an agent-based approach and analysing which aspects can benefit the most against centralized AIs. Chapter 5 describes a generic agent-based framework for RTS games where every game entity becomes an agent, each of which having its own knowledge and set of goals. Different aspects of the game, like economy, exploration and warfare are also analysed, and some agent-based solutions are outlined. The possible exploitation of self-computing properties to efficiently organize the agents activity is then inspected. Chapter 6 presents the design and implementation of an AI for an existing Open Source game in beta development stage: 0 a.d., an historical RTS game on ancient warfare which features a modern graphical engine and evolved mechanics. The entities in the conceptual framework are implemented in a new agent-based platform seamlessly nested inside the existing game engine, called ABot, widely described in Chapters 7, 8 and 9. Chapter 10 and 11 include the design and realization of a new agent based language useful for defining behavioural modules for the agents in ABot, paving the way for a wider spectrum of contributors. Chapter 12 concludes the work analysing the outcome of tests meant to evaluate strategies, realism and pure performance, finally drawing conclusions and future works in Chapter 13.
Resumo:
The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.