3 resultados para Direct synthesis

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is the result of the study of two reactions leading to the formation of important heterocyclic compounds of potential pharmaceutical interest. The first study concerns the reaction of (1,3)-dipolar cycloaddition between nitrones and activated olefins by hydrogen bond catalysis of thioureas derivatives leading to the formation of a five-membered cyclic adducts, an interesting and strategic synthetic intermediate, for the synthesis of benzoazepine. The second project wants to explore the direct oxidative C(sp3)-H α-alkylation of simple amides with subsequent addition of an olefin and cyclization in order to obtain the corresponding oxazine. Both reactions are still under development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporation of the relevant monosaccharide N-Acetyl-D-glucosamine (GlcNAc) into synthetic oligosaccharides by chemical glycosylation is still a very challenging object of studies, since direct reactions are low yielding. This issue is generally ascribed to its low solubility in common solvents and to the formation of a poorly reactive oxazoline intermediate, which is typically bypassed by introducing extra synthetic steps to avoid the presence of the NHAc moiety during glycosylation. Recently, a new direct Lewis acids-catalysed GlcNAc-ylation protocol has been disclosed, with acylated donors appearing to hold potential for high yielding glycosylation reactions. This master project focused indeed on a novel synthesis of promising 1-acyl GlcNAc donors, in order to test them in direct Lewis acid catalysed glycosylation without the need of N-protecting groups. Screening of various Lewis acids and reaction conditions with these acylated donors has been carried out, in presence of reactive primary alcohols as well as more challenging carbohydrate acceptor alcohols. These experiments demonstrated that the fine tuning of the leaving group combined with a suitable metal triflate could lead to a successful reaction outcome in the direct glycosylation. Successful methodology of this kind would provide rapid access to naturally occurring N-glycan motifs, such as the highly relevant human milk oligosaccharides (HMOs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.