7 resultados para Dirac brackets

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo della prima parte di questo elaborato è quello di mostrare come l'approccio geometrico, qui principalmente basato sull'algebra delle forme differenziali, possa semplificare la forma delle equazioni di Maxwell. Verificheremo che tutte le leggi dell'elettromagnetismo possono essere derivate da aspetti puramente geometrici e poi riconosciute come leggi fisiche imponendo le opportune restrizioni. Nella seconda parte trattiamo vari aspetti del monopolo magnetico. Prima lo introdurremo seguendo il percorso di Dirac, poi risolveremo analiticamente i problemi che esso presenta e alla fine inquadreremo i risultati che abbiamo ottenuto all'interno dell'algebra delle forme differenziali.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questo lavoro si affronta l'argomento dei fermioni di Dirac nel grafene, si procederà compiendo nel primo capitolo un'analisi alla struttura reticolare del materiale per poi ricostruirne, sfruttando l'approssimazione di tigth-binding, le funzioni d'onda delle particelle che vivono negli orbitali del carbonio sistemate nella struttura reticolare e ricavarne grazie al passaggio in seconda quantizzazione l'Hamiltoniana. Nel secondo capitolo si ricavano brevemente le equazioni di Dirac e dopo una piccola nota storica si discutono le equazioni di Weyl arrivando all'Hamiltoniana dei fermioni a massa nulla mostrando la palese uguaglianza alla relazione di dispersione delle particelle del grafene. Nel terzo capitolo si commentano le evidenze sperimentali ottenute dalla ASPEC in cui si manifesta per le basse energie uno spettro lineare, dando così conferma alla teoria esposta nei capitoli precedenti.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo di questo elaborato è compiere un viaggio virtuale attraverso le tappe principali dello sviluppo della teoria dei quanti e approfondirla nelle sue diverse rappresentazioni, quella di Erwin Schrodinger, quella di Werner Karl Heisenberg e quella di Paul Adrien Maurice Dirac, fino ad arrivare, nella fase conclusiva, a diverse applicazione delle rappresentazioni, sfiorando marginalmente la Teoria dei Campi e, di conseguenza, introducendo un parziale superamento della stessa Teoria Quantistica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una stella non è un sistema in "vero" equilibrio termodinamico: perde costantemente energia, non ha una composizione chimica costante nel tempo e non ha nemmeno una temperatura uniforme. Ma, in realtà, i processi atomici e sub-atomici avvengono in tempi così brevi, rispetto ai tempi caratteristici dell'evoluzione stellare, da potersi considerare sempre in equilibrio. Le reazioni termonucleari, invece, avvengono su tempi scala molto lunghi, confrontabili persino con i tempi di evoluzione stellare. Inoltre il gradiente di temperatura è dell'ordine di 1e-4 K/cm e il libero cammino medio di un fotone è circa di 1 cm, il che ci permette di assumere che ogni strato della stella sia uno strato adiabatico a temperatura uniforme. Di conseguenza lo stato della materia negli interni stellari è in una condizione di ``quasi'' equilibrio termodinamico, cosa che ci permette di descrivere la materia attraverso le leggi della Meccanica Statistica. In particolare lo stato dei fotoni è descritto dalla Statistica di Bose-Einstein, la quale conduce alla Legge di Planck; lo stato del gas di ioni ed elettroni non degeneri è descritto dalla Statistica di Maxwell-Boltzmann; e, nel caso di degenerazione, lo stato degli elettroni è descritto dalla Statistica di Fermi-Dirac. Nella forma più generale, l'equazione di stato dipende dalla somma dei contributi appena citati (radiazione, gas e degenerazione). Vedremo prima questi contributi singolarmente, e dopo li confronteremo tra loro, ottenendo delle relazioni che permettono di determinare quale legge descrive lo stato fisico di un plasma stellare, semplicemente conoscendone temperatura e densità. Rappresentando queste condizioni su un piano $\log \rho \-- \log T$ possiamo descrivere lo stato del nucleo stellare come un punto, e vedere in che stato è la materia al suo interno, a seconda della zona del piano in cui ricade. È anche possibile seguire tutta l'evoluzione della stella tracciando una linea che mostra come cambia lo stato della materia nucleare nelle diverse fasi evolutive. Infine vedremo come leggi quantistiche che operano su scala atomica e sub-atomica siano in grado di influenzare l'evoluzione di sistemi enormi come quelli stellari: infatti la degenerazione elettronica conduce ad una massa limite per oggetti completamente degeneri (in particolare per le nane bianche) detta Massa di Chandrasekhar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi si discute la formulazione di una teoria quantistica della dinamica libera di particelle e stringhe relativistiche. La dinamica relativistica viene costruita in entrambi i casi a partire dalla formulazione classica con invarianza di gauge della parametrizzazione di, rispettivamente, linee e fogli di mondo. Si scelgono poi condizioni di gauge-fixing dette di cono-luce. La teoria quantistica viene poi formulata usando le prescrizioni di quantizzazione canonica di Dirac.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La seguente tesi si sviluppa in tre parti: un'introduzione alle simmetrie conformi e di scala, una parte centrale dedicata alle anomalie quantistiche ed una terza parte dedicata all'anomalia di traccia per fermioni. Nella seconda parte in particolare si introduce il metodo di calcolo alla Fujikawa e si discute la scelta di regolatori adeguati ed un metodo per ottenerli, si applicano poi questi metodi ai campi, scalare e vettoriale, per l'anomalia di traccia in spazio curvo. Nell'ultimo capitolo si calcolano le anomalie di traccia per un fermione di Dirac e per uno di Weyl; la motivazione per calcolare queste anomalie nasce dal fatto che recenti articoli hanno suggerito che possa emergere un termine immaginario proporzionale alle densità di Pontryagin nell'anomalia di Weyl. Noi non abbiamo trovato questo termine e il risultato è che l'anomalia di traccia risulta essere metà di quella per il caso di Dirac.