5 resultados para Digital Human Modelling (DHM)
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Currently making digital 3D models and replicas of the cultural heritage assets play an important role in the preservation and having a high detail source for future research and intervention. In this dissertation, it is tried to assess different methods for digital surveying and making 3D replicas of cultural heritage assets in different scales of size. The methodologies vary in devices, software, workflow, and the amount of skill that is required. The three phases of the 3D modelling process are data acquisition, modelling, and model presentation. Each of these sections is divided into sub-sections and there are several approaches, methods, devices, and software that may be employed, furthermore, the selection process should be based on the operation's goal, available facilities, the scale and properties of the object or structure to be modeled, as well as the operators' expertise and experience. The most key point to remember is that the 3D modelling operation should be properly accurate, precise, and reliable; therefore, there are so many instructions and pieces of advice on how to perform 3D modelling effectively. It is an attempt to compare and evaluate the various ways of each phase in order to explain and demonstrate their differences, benefits, and drawbacks in order to serve as a simple guide for new and/or inexperienced users.
Resumo:
The benthic dinoflagellate O. ovata represents a serious threat for human health and for the ecology of its blooming areas: thanks to its toxicity this microalga has been responsible for several cases of human intoxication and mass mortalities of benthic invertebrates. Although the large number of studies on this dinoflagellate, the mechanisms underpinning O. ovata growth and toxin production are still far to be fully understood. In this work we have enriched the dataset on this species by carrying out a new experiment on an Adriatic O. cf. ovata strain. Data from this experiment (named Beta) and from another comparable experiment previously conducted on the same strain (named Alpha), revealed some interesting aspects of this dinoflagellate: it is able to grow also in a condition of strong intracellular nutrient deficiency (C:P molar ratio > 400; C:N > 25), reaching extremely low values of chlorophyll-a to carbon ratio (0.0004). Was also found a significant inverse relationships (r > -0.7) between cellular toxin to carbon and cellular nutrient to carbon ratios of experiment Alpha. In the light of these result, we hypothesized that in O. cf. ovata nutrient-stress conditions (intended as intracellular nutrient deficiency) can cause: i) an increase in toxin production; ii) a strong decrease in chlorophyll-a synthesis; iii) a lowering of metabolism associated with the formation of a sort of resting stage. We then used a modelling approach to test and critically evaluate these hypotheses in a mechanistic way: newly developed formulation describing toxin production and fate, and ad hoc changes in the already existent formulations describing chlorophyll synthesis, rest respiration, and mortality, have been incorporated in a simplified version of the European Regional Seas Ecosystem Model (ERSEM), together with a new ad hoc parameterization. The adapted model was able to accurately reproduce many of the trends observed in the Alpha experiment, allowing us to support our hypotheses. Instead the simulations of the experiment Beta were not fully satisfying in quantitative terms. We explained this gap with the presumed different physiological behaviors between the algae of the two experiments, due to the different pre-experimental periods of acclimation: the model was not able to reproduce acclimation processes in its simulations of the experiment Beta. Thus we attempt to simulate the acclimation of the algae to nutrient-stress conditions by manual intervention on some parameters of nutrient-stress thresholds, but we received conflicting results. Further studies are required to shed light on this interesting aspect. In this work we also improve the range of applicability of a state of the art marine biogeochemical model (ERSEM) by implementing in it an ecological relevant process such as the production of toxic compounds.
Resumo:
La colonna vertebrale è la principale sede di metastasi, le quali possono alterare la normale distribuzione dei tessuti ossei e ridurre la capacità della vertebra di sostenere carichi. L’instabilità spinale causata dalle metastasi, tuttavia, è di difficile determinazione. La caratterizzazione meccanica delle vertebre metastatiche permetterebbe di identificare e, di conseguenza trattare, quelle ad alto rischio di frattura. In questo studio, ho valutato il comportamento meccanico a rottura di vertebre umane affette da metastasi misurando in vitro il campo di deformazione. Undici provini, costituiti da due vertebre centrali, una metastatica e una sana, sono stati preparati e scansionati applicando carichi graduali di compressione in una micro-tomografia computerizzata (μCT). Le deformazioni principali sono state misurate attraverso un algoritmo globale di Digital Volume Correlation (DVC) e successivamente sono state analizzate. Lo studio ha rivelato che le vertebre con metastasi litiche raggiungono deformazioni maggiori delle vertebre sane. Invece, le metastasi miste non assicurano un comportamento univoco in quanto combinano gli effetti antagonisti delle lesioni litiche e blastiche. Dunque la valutazione è stata estesa a possibili correlazioni tra il campo di deformazione e la microstruttura della vertebra. L'analisi ha identificato le regioni in cui parte la frattura (a più alta deformazione), senza identificare, in termini microstrutturali, una zona preferenziale di rottura a priori. Infatti, alcune zone con un pattern trabecolare denso, presunte più rigide, hanno mostrato deformazioni maggiori di quelle dei tessuti sani, sottolineando l’importanza della valutazione della qualità del tessuto osseo. Questi risultati, generalizzati su un campione più ampio, potrebbero essere utilizzati per implementare nuovi criteri negli attuali sistemi di valutazione dell'instabilità spinale.
Resumo:
La spina dorsale è uno dei principali siti di sviluppo di metastasi ossee. Queste alterano sia la composizione strutturale che il comportamento meccanico delle vertebre metastatiche, riducendone la resistenza meccanica ed aumentandone il rischio di rottura. Questo studio ha valutato la composizione microstrutturale ed il comportamento meccanico a rottura in specifiche regioni all’interno di vertebre metastatiche. 11 segmenti vertebrali da cadavere, costituiti da una vertebra sana ed una con metastasi (litica, mista o blastica), sono stati testati con carichi graduali di compressione e scansionati con microCT. Le deformazioni interne sono state misurate tramite un algoritmo globale di Digital Volume Correlation (DVC). I risultati dall’analisi microstrutturale hanno mostrato l’ influenza sulla microstruttura delle diverse tipologie di metastasi in corrispondenza della lesione, mentre le caratteristiche microstrutturali nelle regioni intorno alla lesione sono risultate simili a quelle delle vertebre sane. L’analisi delle deformazioni ha inoltre permesso di valutare l’ effetto delle diverse tipologie di metastasi nel compromettere la stabilità spinale. Le vertebre con metastasi litiche hanno raggiunto deformazioni maggiori in corrispondenza della lesione, regione meccanicamente più debole e con una microstruttura maggiormente compromessa a causa della metastasi. Le vertebre con metastasi blastiche hanno raggiunto deformazioni minori nella lesione, regione che ha mostrato una maggiore resistenza meccanica ai carichi, e deformazioni maggiori nelle zone più lontane. Le vertebre con metastasi miste hanno mostrato un comportamento meccanico non univoco, legato alla predominanza di una lesione sull’altra. Infatti, la posizione e la proporzione tra le due lesioni sembra influenzare il comportamento meccanico. I risultati di questo studio, una volta generalizzati, potrebbero portare alla spiegazione delle cause di instabilità meccanica nelle vertebre metastatiche.
Resumo:
La colonna vertebrale è uno dei principali siti per lo sviluppo delle metastasi ossee. Esse modificano le proprietà meccaniche della vertebra indebolendo la struttura e inducendo l’instabilità spinale. La medicina in silico e i modelli agli elementi finiti (FE) hanno trovato spazio nello studio del comportamento meccanico delle vertebre, permettendo una valutazione delle loro proprietà meccaniche anche in presenza di metastasi. In questo studio ho validato i campi di spostamento predetti da modelli microFE di vertebre umane, con e senza metastasi, rispetto agli spostamenti misurati mediante Digital Volume Correlation (DVC). Sono stati utilizzati 4 provini da donatore umano, ognuno composto da una vertebra sana e da una vertebra con metastasi litica. Per ogni vertebra è stato sviluppato un modello microFE omogeneo, lineare e isotropo basato su sequenze di immagini ad alta risoluzione ottenute con microCT (voxel size = 39 μm). Sono state imposte come condizioni al contorno gli spostamenti ottenuti con la DVC nelle fette prossimali e distali di ogni vertebra. I modelli microFE hanno mostrato buone capacità predittive degli spostamenti interni sia per le vertebre di controllo che per quelle metastatiche. Per range di spostamento superiori a 100 μm, il valore di R2 è risultato compreso tra 0.70 e 0.99 e il valore di RMSE% tra 1.01% e 21.88%. Dalle analisi dei campi di deformazione predetti dai modelli microFE sono state evidenziate regioni a maggior deformazione nelle vertebre metastatiche, in particolare in prossimità delle lesioni. Questi risultati sono in accordo con le misure sperimentali effettuate con la DVC. Si può assumere quindi che il modello microFE lineare omogeneo isotropo in campo elastico produca risultati attendibili sia per le vertebre sane sia per le vertebre metastatiche. La procedura di validazione implementata potrebbe essere utilizzata per approfondire lo studio delle proprietà meccaniche delle lesioni blastiche.