4 resultados para Diffusion and lntermittency

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, integro-differential reaction-diffusion models are presented for the description of the temporal and spatial evolution of the concentrations of Abeta and tau proteins involved in Alzheimer's disease. Initially, a local model is analysed: this is obtained by coupling with an interaction term two heterodimer models, modified by adding diffusion and Holling functional terms of the second type. We then move on to the presentation of three nonlocal models, which differ according to the type of the growth (exponential, logistic or Gompertzian) considered for healthy proteins. In these models integral terms are introduced to consider the interaction between proteins that are located at different spatial points possibly far apart. For each of the models introduced, the determination of equilibrium points with their stability and a study of the clearance inequalities are carried out. In addition, since the integrals introduced imply a spatial nonlocality in the models exhibited, some general features of nonlocal models are presented. Afterwards, with the aim of developing simulations, it is decided to transfer the nonlocal models to a brain graph called connectome. Therefore, after setting out the construction of such a graph, we move on to the description of Laplacian and convolution operations on a graph. Taking advantage of all these elements, we finally move on to the translation of the continuous models described above into discrete models on the connectome. To conclude, the results of some simulations concerning the discrete models just derived are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il presente lavoro è motivato dal problema della constituzione di unità percettive a livello della corteccia visiva primaria V1. Si studia dettagliatamente il modello geometrico di Citti-Sarti con particolare attenzione alla modellazione di fenomeni di associazione visiva. Viene studiato nel dettaglio un modello di connettività. Il contributo originale risiede nell'adattamento del metodo delle diffusion maps, recentemente introdotto da Coifman e Lafon, alla geometria subriemanniana della corteccia visiva. Vengono utilizzati strumenti di teoria del potenziale, teoria spettrale, analisi armonica in gruppi di Lie per l'approssimazione delle autofunzioni dell'operatore del calore sul gruppo dei moti rigidi del piano. Le autofunzioni sono utilizzate per l'estrazione di unità percettive nello stimolo visivo. Sono presentate prove sperimentali e originali delle capacità performanti del metodo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.