2 resultados para Differentiation and Applicability

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The full blood cell (FBC) count is the most common indicator of diseases. At present hematology analyzers are used for the blood cell characterization, but, recently, there has been interest in using techniques that take advantage of microscale devices and intrinsic properties of cells for increased automation and decreased cost. Microfluidic technologies offer solutions to handling and processing small volumes of blood (2-50 uL taken by finger prick) for point-of-care(PoC) applications. Several PoC blood analyzers are in use and may have applications in the fields of telemedicine, out patient monitoring and medical care in resource limited settings. They have the advantage to be easy to move and much cheaper than traditional analyzers, which require bulky instruments and consume large amount of reagents. The development of miniaturized point-of-care diagnostic tests may be enabled by chip-based technologies for cell separation and sorting. Many current diagnostic tests depend on fractionated blood components: plasma, red blood cells (RBCs), white blood cells (WBCs), and platelets. Specifically, white blood cell differentiation and counting provide valuable information for diagnostic purposes. For example, a low number of WBCs, called leukopenia, may be an indicator of bone marrow deficiency or failure, collagen- vascular diseases, disease of the liver or spleen. The leukocytosis, a high number of WBCs, may be due to anemia, infectious diseases, leukemia or tissue damage. In the laboratory of hybrid biodevices, at the University of Southampton,it was developed a functioning micro impedance cytometer technology for WBC differentiation and counting. It is capable to classify cells and particles on the base of their dielectric properties, in addition to their size, without the need of labeling, in a flow format similar to that of a traditional flow cytometer. It was demonstrated that the micro impedance cytometer system can detect and differentiate monocytes, neutrophils and lymphocytes, which are the three major human leukocyte populations. The simplicity and portability of the microfluidic impedance chip offer a range of potential applications in cell analysis including point-of-care diagnostic systems. The microfluidic device has been integrated into a sample preparation cartridge that semi-automatically performs erythrocyte lysis before leukocyte analysis. Generally erythrocytes are manually lysed according to a specific chemical lysis protocol, but this process has been automated in the cartridge. In this research work the chemical lysis protocol, defined in the patent US 5155044 A, was optimized in order to improve white blood cell differentiation and count performed by the integrated cartridge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Yellowfin tuna (Thunnus albacares, YFT, Bonnaterre 1788) is one of the most important market tuna species in the world. The high mortality of juveniles is in part caused by their bycatch. Indeed, if unregulated, it could permanently destabilize stocks health. For this reason investigating and better knowing the stock boundaries represent a crucial concern. Aim of this thesis was to preliminary investigate the YFT population structure within and between Atlantic and Pacific Oceans through the analysis of genetic variation at eight microsatellite loci and assess the occurrence of barriers to the gene flow between Oceans. For this propouse we collected 4 geographical samples coming from Atlantic and Pacific Ocean and selected a panel of 8 microsatellites loci developped by Antoni et al., (2014). Samples 71-2-Y and 77-2-Y, came from rispectively west central pacific ocean (WCPO) and east central pacific ocean (ECPO), instead samples 41-1-Y and 34-2-Y derive from west central atlantic ocean (WCAO) and east central atlantic ocean (ECAO). Total 160 specimens were analyzed (40 per sample) and were carried out several genetic information as allele frequencies, allele number, allelic richness, HWE (using He and Ho) and pairwise Fst genetic distance. Results obtained, may support the panmictic theory of this species, only one of pairwise Fst obtained is statistically significant (Fst= 0.00927; pV= 0.00218) between 41-1-Y and 71-2-Y samples. Results suggest low genetic differentiation and consequent high level of gene flow between Atlantic and Pacific populations. Furthermore, we performed an analysis of molecular taxonomy through the use of ATCO (the flaking region between ATPse6 and cytochrome oxidase subunit III genes mt DNA, to discriminate within the gener Thunnus two of the related species (Yellofin and bigeye tuna) according with their difficult recognition at certain size (<40 cm). ATCO analysis in this thesis, has provided strong discriminate evidence between the target species proving to be one of the most reliable genetic tools capable to indagate within the genus Thunnus. Thus, our study has provided useful information for possible use of this protocol for conservation plans and management of this fish stocks.