6 resultados para Different protocols
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The main goal of this thesis is to study the impact of retransmissions in the upcoming IEEE 802.11bd standard and to determine an algorithm which can, on a vehicle to vehicle basis, activate them or not depending on the channel state, using the channel busy rate (CBR) as the leading metric. The study was based on simulations performed with the WiLabV2Xsim, which is an open source discrete event simulator that can be used to simulate communication between vehicles under the rules of different protocols.
Resumo:
In this work, two different protocols for the synthesis of Nb2O5-SiO2 with a sol-gel route in which supercritical carbon dioxide was used as solvent have been developed. The tailored design of the reactor allowed the reactants to come into contact only when supercritical CO2 is present, and the high-throughput experimentation scCO2 unit allowed the screening of synthetic parameters, that led to a Nb2O5 incorporation into the silica matrix of 2.5 wt%. N2-physisorption revealed high surface areas and the presence of meso- and micropores. XRD allowed to demonstrate the amorphous character of these materials. SEM-EDX proved the excellent dispersion of Nb2O5 into the silica matrix. These materials were tested in the epoxidation of cyclooctene with hydrogen peroxide, which is considered an environmentally friendly oxidant. The catalysts were virtually inactive in an organic, polar, aprotic solvent (1,4-dioxane). However, the most active scCO2 Nb2O5-SiO2 catalyst achieved a cyclooctene conversion of 44% with a selectivity of 88% towards the epoxide when tested in ethanol. Catalytic tests on cyclohexene revealed the presence of the epoxide, which is remarkable, considering that this substrate is easily oxidised to the diol. The behaviour in protic and aprotic solvents is compared to that of TS-1.
Resumo:
The IoT is growing more and more each year and is becoming so ubiquitous that it includes heterogeneous devices with different hardware and software constraints leading to an highly fragmented ecosystem. Devices are using different protocols with different paradigms and they are not compatible with each other; some devices use request-response protocols like HTTP or CoAP while others use publish-subscribe protocols like MQTT. Integration in IoT is still an open research topic. When handling and testing IoT sensors there are some common task that people may be interested in: reading and visualizing the current value of the sensor; doing some aggregations on a set of values in order to compute statistical features; saving the history of the data to a time-series database; forecasting the future values to react in advance to a future condition; bridging the protocol of the sensor in order to integrate the device with other tools. In this work we will show the working implementation of a low-code and flow-based tool prototype which supports the common operations mentioned above, based on Node-RED and Python. Since this system is just a prototype, it has some issues and limitations that will be discussed in this work.
Resumo:
Wireless sensor networks (WSNs) consist of a large number of sensor nodes, characterized by low power constraint, limited transmission range and limited computational capabilities [1][2].The cost of these devices is constantly decreasing, making it possible to use a large number of sensor devices in a wide array of commercial, environmental, military, and healthcare fields. Some of these applications involve placing the sensors evenly spaced on a straight line for example in roads, bridges, tunnels, water catchments and water pipelines, city drainages, oil and gas pipelines etc., making a special class of these networks which we define as a Linear Wireless Network (LWN). In LWNs, data transmission happens hop by hop from the source to the destination, through a route composed of multiple relays. The peculiarity of the topology of LWNs, motivates the design of specialized protocols, taking advantage of the linearity of such networks, in order to increase reliability, communication efficiency, energy savings, network lifetime and to minimize the end-to-end delay [3]. In this thesis a novel contention based Medium Access Control (MAC) protocol called L-CSMA, specifically devised for LWNs is presented. The basic idea of L-CSMA is to assign different priorities to nodes based on their position along the line. The priority is assigned in terms of sensing duration, whereby nodes closer to the destination are assigned shorter sensing time compared to the rest of the nodes and hence higher priority. This mechanism speeds up the transmission of packets which are already in the path, making transmission flow more efficient. Using NS-3 simulator, the performance of L-CSMA in terms of packets success rate, that is, the percentage of packets that reach destination, and throughput are compared with that of IEEE 802.15.4 MAC protocol, de-facto standard for wireless sensor networks. In general, L-CSMA outperforms the IEEE 802.15.4 MAC protocol.
Resumo:
Digital Breast Tomosynthesis (DBT) is an advanced mammography technique based on the reconstruction of a pseudo-volumetric image. To date, image quality represents the most deficient section of DBT quality control protocols. In fact, related tests are not yet characterized by either action levels or typical values. This thesis work focuses on the evaluation of one aspect of image quality: the z-resolution. The latter is studied in terms of Artifact Spread Function (ASF), a function that describes the signal spread of a detail along the reconstructed focal planes. To quantify the ASF numerically, its Full Width at Half Maximum (FWHM) is calculated and used as a representative index of z-resolution. Experimental measurements were acquired in 24 DBT systems, of 7 different models, currently in use in 20 hospital facilities in Italy. The analysis, performed on the clinical reconstructed images, of 5 different commercial phantoms, lead to the identification of characteristic FWHM values for each type of DBT system. The ASF clearly showed a dependence on the size of the detail, providing higher FWHM values for larger objects. The z-resolution was found to be positively influenced by the acquisition angle: Fujifilm sistematically showed wider ASF profiles in ST mode (15°) than in HR mode (40°). However, no clear relationship was found between angular range and ASF, among different DBT systems, due to the influence of the peculiarities of each reconstruction algorithm. The experimental approach shown in this thesis work can be proposed as a z-resolution quality control test procedure. Contextually, the values found could be used as a starting point for identifying typical values to be included in the test, in a DBT protocol. Clearly, a statistically significant number of images is needed to do this. The equipment involved in this work is located in hospitals and is not available for research purposes, so only a limited amount of data was acquired and processed.
Resumo:
Radiation dose in x-ray computed tomography (CT) has become a topic of great interest due to the increasing number of CT examinations performed worldwide. In fact, CT scans are responsible of significant doses delivered to the patients, much larger than the doses due to the most common radiographic procedures. This thesis work, carried out at the Laboratory of Medical Technology (LTM) of the Rizzoli Orthopaedic Institute (IOR, Bologna), focuses on two primary objectives: the dosimetric characterization of the tomograph present at the IOR and the optimization of the clinical protocol for hip arthroplasty. In particular, after having verified the reliability of the dose estimates provided by the system, we compared the estimates of the doses delivered to 10 patients undergoing CT examination for the pre-operative planning of hip replacement with the Diagnostic Reference Level (DRL) for an osseous pelvis examination. Out of 10 patients considered, only for 3 of them the doses were lower than the DRL. Therefore, the necessity to optimize the clinical protocol emerged. This optimization was investigated using a human femur from a cadaver. Quantitative analysis and comparison of 3D reconstructions were made, after having performed manual segmentation of the femur from different CT acquisitions. Dosimetric simulations of the CT acquisitions on the femur were also made and associated to the accuracy of the 3D reconstructions, to analyse the optimal combination of CT acquisition parameters. The study showed that protocol optimization both in terms of Hausdorff distance and in terms of effective dose (ED) to the patient may be realized simply by modifying the value of the pitch in the protocol, by choosing between 0.98 and 1.37.