3 resultados para Diastereoisomer

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last few years organic chemistry has focused attention on enantiomeric resolution. Among the several techiniques, crystallization-induced diastereoisomeric transformation (CIDT) aroused the interest because of high yields, as well as to meet the criteria of green chemistry. The process is applied in the specific way for a racemic mixtures of α- epimerizable aldehydes, in order to obtain enatiomerically enrichment mixtures. This technique involves the transformation of a racemic mixture of enantiomers into a diasteroisomeric one by a reaction with a enantiopure auxiliary (Betti’s base). Then, to mixture of diastereoisomers is applied the acid-catalyzed enrichment process: in solution, the epimerization of more soluble diastereoisomer occurs, accompanied by precipitation and hence the removal of the less soluble one from the equilibrium. Finally, through the hydrolysis reaction, it was possible to recover the enantiomerically enriched aldehydes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystallization-induced diastereoisomer transformation (CIDT) was successfully employed in the enantioselective synthesis of 2-alkyl-3-aryl-propan-1-amines. These products are seen as potentially useful building blocks in the field of asymmetric organic chemistry, notably for pharmaceutically relevant compounds. The procedure was based on a recently reported protocol for deracemization of dihydrocinnamic aldehydes in which enantiomerically enriched 1-(amino(phenyl)methyl)naphthalen-2-ol (Betti base) is employed as a resolving agent. Additionally, fenpropimorph, a biologically active substance which contains the 2-alkyl-3-aryl-propan-1-amine moiety was synthetized, as an attempt to assess the usefulness of the enantiomerically enriched amines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multimodal biology activity of ergot alkaloids is known by humankind since middle ages. Synthetically modified ergot alkaloids are used for the treatment of various medical conditions. Despite the great progress in organic syntheses, the total synthesis of ergot alkaloids remains a great challenge due to the complexity of their polycyclic structure with multiple stereogenic centres. This project has developed a new domino reaction between indoles bearing a Michael acceptor at the 4 position and nitroethene, leading to potential ergot alkaloid precursors in highly enantioenriched form. The reaction was optimised and applied to a large variety of substrate with good results. Even if unfortunately all attempts to further modify the obtained polycyclic structure failed, it was found a reaction able to produce the diastereoisomer of the polycyclic product in excellent yields. The compounds synthetized were characterized by NMR and ESIMS analysis confirming the structure and their enantiomeric excess was determined by chiral stationary phase HPLC. The mechanism of the reaction was evaluated by DFT calculations, showing the formation of a key bicoordinated nitronate intermediate, and fully accounting for the results observed with all substrates. The relative and absolute configuration of the adducts were determined by a combination of NMR, ECD and computational methods.