2 resultados para Diagnostic techniques and procedures

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the thesis project, developed within the Line Control & Software Engineering team of G.D company, is to analyze and identify the appropriate tool to automate the HW configuration process using Beckhoff technologies by importing data from an ECAD tool. This would save a great deal of time, since the I/O topology created as part of the electrical planning is presently imported manually in the related SW project of the machine. Moreover, a manual import is more error-prone because of human mistake than an automatic configuration tool. First, an introduction about TwinCAT 3, EtherCAT and Automation Interface is provided; then, it is analyzed the official Beckhoff tool, XCAD Interface, and the requirements on the electrical planning to use it: the interface is realized by means of the AutomationML format. Finally, due to some limitations observed, the design and implementation of a company internal tool is performed. Tests and validation of the tool are performed on a sample production line of the company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of industrial automation, there is an increasing need to use optimal control systems that have low tracking errors and low power and energy consumption. The motors we are dealing with are mainly Permanent Magnet Synchronous Motors (PMSMs), controlled by 3 different types of controllers: a position controller, a speed controller, and a current controller. In this thesis, therefore, we are going to act on the gains of the first two controllers by going to find, through the TwinCAT 3 software, what might be the best set of parameters. To do this, starting with the default parameters recommended by TwinCAT, two main methods were used and then compared: the method of Ziegler and Nichols, which is a tabular method, and advanced tuning, an auto-tuning software method of TwinCAT. Therefore, in order to analyse which set of parameters was the best,several experiments were performed for each case, using the Motion Control Function Blocks. Moreover, some machines, such as large robotic arms, have vibration problems. To analyse them in detail, it was necessary to use the Bode Plot tool, which, through Bode plots, highlights in which frequencies there are resonance and anti-resonance peaks. This tool also makes it easier to figure out which and where to apply filters to improve control.