4 resultados para Detection process

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, we aim to discuss a simple mathematical model for the edge detection mechanism and the boundary completion problem in the human brain in a differential geometry framework. We describe the columnar structure of the primary visual cortex as the fiber bundle R2 × S1, the orientation bundle, and by introducing a first vector field on it, explain the edge detection process. Edges are detected through a lift from the domain in R2 into the manifold R2 × S1 and are horizontal to a completely non-integrable distribution. Therefore, we can construct a subriemannian structure on the manifold R2 × S1, through which we retrieve perceived smooth contours as subriemannian geodesics, solutions to Hamilton’s equations. To do so, in the first chapter, we illustrate the functioning of the most fundamental structures of the early visual system in the brain, from the retina to the primary visual cortex. We proceed with introducing the necessary concepts of differential and subriemannian geometry in chapters two and three. We finally implement our model in chapter four, where we conclude, comparing our results with the experimental findings of Heyes, Fields, and Hess on the existence of an association field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is aimed to assess similarities and mismatches between the outputs from two independent methods for the cloud cover quantification and classification based on quite different physical basis. One of them is the SAFNWC software package designed to process radiance data acquired by the SEVIRI sensor in the VIS/IR. The other is the MWCC algorithm, which uses the brightness temperatures acquired by the AMSU-B and MHS sensors in their channels centered in the MW water vapour absorption band. At a first stage their cloud detection capability has been tested, by comparing the Cloud Masks they produced. These showed a good agreement between two methods, although some critical situations stand out. The MWCC, in effect, fails to reveal clouds which according to SAFNWC are fractional, cirrus, very low and high opaque clouds. In the second stage of the inter-comparison the pixels classified as cloudy according to both softwares have been. The overall observed tendency of the MWCC method, is an overestimation of the lower cloud classes. Viceversa, the more the cloud top height grows up, the more the MWCC not reveal a certain cloud portion, rather detected by means of the SAFNWC tool. This is what also emerges from a series of tests carried out by using the cloud top height information in order to evaluate the height ranges in which each MWCC category is defined. Therefore, although the involved methods intend to provide the same kind of information, in reality they return quite different details on the same atmospheric column. The SAFNWC retrieval being very sensitive to the top temperature of a cloud, brings the actual level reached by this. The MWCC, by exploiting the capability of the microwaves, is able to give an information about the levels that are located more deeply within the atmospheric column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correctness of information gathered in production environments is an essential part of quality assurance processes in many industries, this task is often performed by human resources who visually take annotations in various steps of the production flow. Depending on the performed task the correlation between where exactly the information is gathered and what it represents is more than often lost in the process. The lack of labeled data places a great boundary on the application of deep neural networks aimed at object detection tasks, moreover supervised training of deep models requires a great amount of data to be available. Reaching an adequate large collection of labeled images through classic techniques of data annotations is an exhausting and costly task to perform, not always suitable for every scenario. A possible solution is to generate synthetic data that replicates the real one and use it to fine-tune a deep neural network trained on one or more source domains to a different target domain. The purpose of this thesis is to show a real case scenario where the provided data were both in great scarcity and missing the required annotations. Sequentially a possible approach is presented where synthetic data has been generated to address those issues while standing as a training base of deep neural networks for object detection, capable of working on images taken in production-like environments. Lastly, it compares performance on different types of synthetic data and convolutional neural networks used as backbones for the model.