9 resultados para Desigualdade de Harnack
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questo elaborato si presentano alcuni risultati relativi alle equazioni differenziali stocastiche (SDE) lineari. La soluzione di un'equazione differenziale stocastica lineare è un processo stocastico con distribuzione multinormale in generale degenere. Al contrario, nel caso in cui la matrice di covarianza è definita positiva, la soluzione ha densità gaussiana Γ. La Γ è inoltre la soluzione fondamentale dell'operatore di Kolmogorov associato alla SDE. Nel primo capitolo vengono presentate alcune condizioni necessarie e sufficienti che assicurano che la matrice di covarianza sia definita positiva nel caso, più semplice, in cui i coefficienti della SDE sono costanti, e nel caso in cui questi sono dipendenti dal tempo. A questo scopo gioca un ruolo fondamentale la teoria del controllo. In particolare la condizione di Kalman fornisce un criterio operativo per controllare se la matrice di covarianza è definita positiva. Nel secondo capitolo viene presentata una dimostrazione diretta della disuguaglianza di Harnack utilizzando una stima del gradiente dovuta a Li e Yau. Le disuguaglianze di Harnack sono strumenti fondamentali nella teoria delle equazioni differenziali a derivate parziali. Nel terzo capitolo viene proposto un esempio di applicazione della disuguaglianza di Harnack in finanza. In particolare si osserva che la disuguaglianza di Harnack fornisce un limite superiore a priori del valore futuro di un portafoglio autofinanziante in funzione del capitale iniziale.
Resumo:
In questo elaborato si illustra una delle principali proprietà godute dalle funzioni armoniche: la disuguaglianza di Harnack, dal nome del matematico che la dimostrò nel 1887. Nella sua formulazione più semplice, essa afferma che se una funzione armonica è non negativa, allora l'estremo superiore di tale funzione su una palla euclidea è controllato dall'alto dall'estremo inferiore della funzione sulla stessa palla, a meno di una costante moltiplicativa dipendente solo dalla dimensione. Una simile disuguaglianza è soddisfatta anche da soluzioni di equazioni alle derivate parziali più generali dell'equazione di Laplace. Ad esempio, J. Moser nel 1961 dimostra che le soluzioni deboli di equazioni differenziali ellittiche lineari soddisfano una disuguaglianza di tipo Harnack. Tale risultato è argomento dell'ultimo capitolo di questo elaborato.
Resumo:
La tesi presenta il criterio di regolarità di Wiener dell’ambito classico dell’operatore di Laplace ed in seguito alcune nozioni di teoria del potenziale e la dimostrazione del criterio nel caso dell’operatore del calore; in questa seconda sezione viene dedicata particolare attenzione alle formule di media e ad una diseguaglianza forte di Harnack, che risultano fondamentali nella trattazione dell’argomento centrale.
Resumo:
In questo lavoro studiamo le funzioni armoniche e le loro proprietà: le formule di media, il principio del massimo e del minimo (forte e debole), la disuguaglianza di Harnack e il teorema di Louiville. Successivamente scriviamo la prima e la seconda identità di Green, che permettono di ottenere esplicitamente la soluzione fondamentale dell’equazione di Laplace, tramite il calcolo delle soluzioni radiali del Laplaciano. Introduciamo poi la funzione di Green, da cui si ottiene una formula di rappresentazione per le funzioni armoniche. Se il dominio di riferimento è una palla, la funzione di Green può essere determinata esplicitamente, e ciò conduce alla rappresentazione integrale di Poisson per le funzioni armoniche in una palla.
Resumo:
In questa tesi studiamo le proprietà fondamentali delle funzioni armoniche. Ricaviamo le formule di media mostrando alcune proprietà importanti, quali la disuguaglianza di Harnack, il teorema di Liouville, il principio del massimo debole e forte. Infine, illustriamo un criterio di risolubilità per il problema di Dirichlet per il Laplaciano in un arbitrario dominio limitato di R^n tramite un metodo noto come metodo di Perron per le funzioni subarmoniche.
Resumo:
Nell'elaborato si introduce l'operatore del calore e le funzioni caloriche mostrandone alcuni esempi. Di seguito si deduce la soluzione fondamentale dell'operatore H evidenziandone alcune importanti proprietà. Si procede, poi, con l'introduzione dell'Identità di Green per l'operatore del calore e da questa si ricava la formula di media per le funzioni caloriche. Grazie a tale formula di media si evidenzia una cruciale proprietà delle funzioni caloriche: la loro regolarità C-infinito. Di seguito si deduce un'espressione migliorata per la formula di media calorica avente come vantaggio quello di avere un nucleo limitato. Si procede, quindi, mostrando alcune conseguenze dell'espressione migliorata dimostrata: si ricava, infatti, in modo diretto la disuguaglianza di Harnack e il principio di massimo forte. L'elaborato procede, poi, con lo studio del problema di Cauchy relativo all'operatore del calore. Infine si analizzano i teoremi di Liouville per le funzioni caloriche.
Resumo:
Le funzioni p-armoniche sono definite come soluzioni dell'equazione differenziale alle derivate parziali $\Delta_p u = 0$, dove $\Delta_p$ è l'operatore p-laplaciano. La classe delle funzioni p-armoniche si può estendere includendo funzioni derivabili in senso debole. Si dimostra che ogni funzione p-armonica è localmente hoelderiana, così come il suo gradiente. Infine, si caratterizzano le funzioni p-armoniche in termini della loro media integrale, mediante formule di media asintotiche.
Resumo:
All'interno della tesi viene analizzato il principio del massimo per l'operatore di Laplace e per operatori lineari ellittici differenziali. Attraverso l'utilizzo delle formule di media si dimostra il principio del massimo forte e debole per l'operatore di Laplace e si analizzano le sue applicazioni, quali la disuguaglianza di Harnack, il teorema di Liouville e il teorema fondamentale dell'algebra. Successivamente si vanno a dimostrare il principio del massimo debole e, tramite il lemma di Hopf, il principio del massimo forte, per operatori lineari ellittici differenziali. Infine si studia il caso dell'unicità delle soluzioni dei problemi di Dirichlet per operatori lineari ellittici differenziali, sfruttando il principio del massimo debole.
Resumo:
Questa tesi tratta delle proprietà fondamentali delle funzioni armoniche. Nel primo Capitolo utilizziamo il teorema della divergenza per ottenere importanti identità integrali quali la formula di rappresentazione di Green e la formula dell'integrale di Poisson; tali identità ci permettono di mostrare nel secondo Capitolo che per le funzioni armoniche valgono le formule di media e, in particolare, queste rappresentano una proprietà caratterizzante per tali funzioni. Le formule di media rappresentano un ottimo punto di partenza per lo studio delle proprietà delle funzioni armoniche che osserviamo nel terzo Capitolo; da esse è possibile ottenere il principio del massimo e del minimo forte e la disuguaglianza di Harnack. Da queste due è possibile ottenere alcune importanti proprietà sulla convergenza di successioni di funzioni armoniche; in particolare osserviamo che una successione di funzioni armoniche convergente converge ad una funzione armonica.