10 resultados para Design for Manufacturing (DFM)

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis presents the UHF band transceiver project carried out under the lead of Spacemind company. In particular reports the outcome of the first phase of the project encompassing management tasks, requirements definition and the first electrical design. Then follows the study of the UHF band antenna which develops in parallel with the transceiver. The antenna plus the transceiver will be sold together as a complete UHF telecommunication system for cubesats made by Spacemind. As a main result, this work contributed to the design and manufacturing of the first transceiver prototype.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the framework of an international collaboration with South Africa CSIR, the structural design, manufacturing and testing of the new wing for the Modular UAS in composite materials has been performed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L’importanza delle api per la vita sulla Terra ed il rischio alle quali sono sottoposte per via dell’azione dell’uomo sono ormai un dato di fatto. La concezione antropocentrica della natura e l’allevamento al solo fine produttivo di questi piccoli insetti, ha da sempre danneggiato il loro habitat e interferito con i loro cicli biologici. L’apicoltura, nata come un rapporto mutualistico in cui l’uomo offriva un rifugio alle api e loro in cambio provvedevano al suo nutrimento, si è trasformato in una dannosa dipendenza ed in un assoggettamento di questi insetti ai ritmi artificiali e tutt’altro che naturali della produzione rapida e seriale volta all’ottenimento di un profitto. Un’evidente prova di questa condizione, sono i rifugi per le api, le arnie. Ci siamo mai chiesti perché le arnie hanno questa forma? È quella che preferiscono le api, o quella che rende più pratici e veloci processi di costruzione, gestione e produzione? In natura le api colonizzano cavità quali tronchi cavi di alberi, forme lontane, per non dire diametralmente opposte a quelle in cui le vediamo vivere negli allevamenti. In questa ottica, il design e le nuove tecnologie, poste al servizio della Natura, conducono ad un punto di incontro tra le esigenze umane e quelle degli altri esseri viventi, delle api in questo caso. I concetti di Additive Manufacturing e Design Computazionale, permettono processi di produzione simili a quelli evolutivi naturali e trovano per questa motivazione un’applicazione ideale per progetti che si pongono come fine quello di discostarsi da una visione troppo artificiale, per riavvicinarsi alla perfezione e all’armonia delle leggi della Natura.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Additive Manufacturing (AM), also known as “3D printing”, is a recent production technique that allows the creation of three-dimensional elements by depositing multiple layers of material. This technology is widely used in various industrial sectors, such as automotive, aerospace and aviation. With AM, it is possible to produce particularly complex elements for which traditional techniques cannot be used. These technologies are not yet widespread in the civil engineering sector, which is slowly changing thanks to the advantages of AM, such as the possibility of realizing elements without geometric restrictions, with less material usage and a higher efficiency, in particular employing Wire-and-Arc Additive Manufacturing (WAAM) technology. Buildings that benefit most from AM are all those structures designed using form-finding and free-form techniques. These include gridshells, where joints are the most critical and difficult elements to design, as the overall behaviour of the structure depends on them. It must also be considered that, during the design, the engineer must try to minimize the structure's own weight. Self-weight reductions can be achieved by Topological Optimization (TO) of the joint itself, which generates complex geometries that could not be made using traditional techniques. To sum up, weight reductions through TO combined with AM allow for several potential benefits, including economic ones. In this thesis, the roof of the British Museum is considered as a case study, analysing the gridshell structure of which a joint will be chosen to be designed and manufactured, using TO and WAAM techniques. Then, the designed joint will be studied in order to understand its structural behaviour in terms of stiffness and strength. Finally, a printing test will be performed to assess the production feasibility using WAAM technology. The computational design and fabrication stages were carried out at Technische Universität Braunschweig in Germany.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although being studied only for few years, Wire and Arc Additive Manufacturing (WAAM) will become the predominant way of producing stainless-steel elements in a near-like future. The analysis and study of such elements has yet to be defined in a proper way, but the projects regarding this subject are innovating more and more thanks to the findings discovered by the latter. This thesis is focused on an initial stage on the analysis of mechanical and geometrical properties of such stainless-steel elements produced by MX3D laboratories in Amsterdam, and to perform a calibration of the design strength values by means of Annex D of Eurocode 0, which talks about the analysis of the semi-probabilistic safety factors, hence the definition of characteristic values. Moreover, after testing the stainless-steel specimens by means of strain gauges and after obtaining mechanical and geometrical properties, a statistical analysis of such properties and an evaluation of characteristic values is performed. After this, there is to execute the calibration of design strength values of WAAM inclined bars and intersections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Every year, thousand of surgical treatments are performed in order to fix up or completely substitute, where possible, organs or tissues affected by degenerative diseases. Patients with these kind of illnesses stay long times waiting for a donor that could replace, in a short time, the damaged organ or the tissue. The lack of biological alternates, related to conventional surgical treatments as autografts, allografts, e xenografts, led the researchers belonging to different areas to collaborate to find out innovative solutions. This research brought to a new discipline able to merge molecular biology, biomaterial, engineering, biomechanics and, recently, design and architecture knowledges. This discipline is named Tissue Engineering (TE) and it represents a step forward towards the substitutive or regenerative medicine. One of the major challenge of the TE is to design and develop, using a biomimetic approach, an artificial 3D anatomy scaffold, suitable for cells adhesion that are able to proliferate and differentiate themselves as consequence of the biological and biophysical stimulus offered by the specific tissue to be replaced. Nowadays, powerful instruments allow to perform analysis day by day more accurateand defined on patients that need more precise diagnosis and treatments.Starting from patient specific information provided by TC (Computed Tomography) microCT and MRI(Magnetic Resonance Imaging), an image-based approach can be performed in order to reconstruct the site to be replaced. With the aid of the recent Additive Manufacturing techniques that allow to print tridimensional objects with sub millimetric precision, it is now possible to practice an almost complete control of the parametrical characteristics of the scaffold: this is the way to achieve a correct cellular regeneration. In this work, we focalize the attention on a branch of TE known as Bone TE, whose the bone is main subject. Bone TE combines osteoconductive and morphological aspects of the scaffold, whose main properties are pore diameter, structure porosity and interconnectivity. The realization of the ideal values of these parameters represents the main goal of this work: here we'll a create simple and interactive biomimetic design process based on 3D CAD modeling and generative algorithmsthat provide a way to control the main properties and to create a structure morphologically similar to the cancellous bone. Two different typologies of scaffold will be compared: the first is based on Triply Periodic MinimalSurface (T.P.M.S.) whose basic crystalline geometries are nowadays used for Bone TE scaffolding; the second is based on using Voronoi's diagrams and they are more often used in the design of decorations and jewellery for their capacity to decompose and tasselate a volumetric space using an heterogeneous spatial distribution (often frequent in nature). In this work, we will show how to manipulate the main properties (pore diameter, structure porosity and interconnectivity) of the design TE oriented scaffolding using the implementation of generative algorithms: "bringing back the nature to the nature".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I veicoli ad alte prestazioni sono soggetti ad elevati carichi per piccoli intervalli di tempo. Questo comporta diverse criticità sulle componenti che costituiscono la vettura: una di queste è la pinza freno. Al fine di renderla performante è necessario il possesso di due proprietà. In primo luogo, la pinza freno deve essere il più leggera possibile poiché essa conferisce un'inerzia nella risposta della sospensione del veicolo, procurando il distacco dello pneumatico dal suolo e causando perdita di aderenza. In secondo luogo, è necessario contenere le deformazioni della pinza freno garantendo un determinato feeling per il pilota. Il compito del progettista è ottimizzare questi due parametri che hanno effetti antitetici. Questa difficoltà porta il progettista a creare design molto complessi per raggiungere l’ottimale e non sempre le geometrie ottenute sono realizzabili con tecnologie convenzionali. Questo studio riguarda il miglioramento prestazionale di una pinza freno costruita con una lega di alluminio 7075-T6 e lavorato dal pieno. Gli obbiettivi sono quello di produrre il nuovo corpo in titanio TI6Al4V, dal momento che le temperature di esercizio portano a grandi decadute di caratteristiche meccaniche dell’alluminio, contenere il più possibile la massa a fronte dell’aumento di densità di materiale e ovviamente limitare le deformazioni. Al fine di ottenere gli obbiettivi prefissati sono utilizzati metodi agli elementi finiti in diverse fasi della progettazione: per acquisire una geometria di partenza (ottimizzazione topologica) e per la validazione delle geometrie ottenute. Le geometrie ricavate tramite l’ottimizzazione topologica devono essere ricostruite tramite software CAD affinché possano essere ingegnerizzate. Durante la modellazione è necessario valutare quale tecnologia è più vantaggiosa per produrre il componente. In questo caso studio si utilizza un processo di addizione di materiale, più specificatamente una tecnica Selective Laser Melting (SLM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes a study conducted for the development of a new approach for the design of compliant mechanisms. Currently compliant mechanisms are based on a 2.5D design method. The applications for which compliant mechanisms can be used this way, is limited. The proposed research suggests to use a 3D approach for the design of CM’s, to better exploit its useful properties. To test the viability of this method, a practical application was chosen. The selected application is related to morphing wings. During this project a working prototype of a variable sweep and variable AoA system was designed and made for an SUAV. A compliant hinge allows the system to achieve two DOF. This hinge has been designed using the proposed 3D design approach. To validate the capabilities of the design, two methods were used. One of these methods was by simulation. By using analysis software, a basic idea could be provided of the stress and deformation of the designed mechanism. The second validation was done by means of AM. Using FDM and material jetting technologies, several prototypes were manufactured. The result of the first model showed that the DOF could be achieved. Models manufactured using material jetting technology, proved that the designed model could provide the desired motion and exploit the positive characteristics of CM. The system could be manufactured successfully in one part. Being able to produce the system in one part makes the need for an extensive assembly process redundant. This improves its structural quality. The materials chosen for the prototypes were PLA, VeroGray and Rigur. The material properties were suboptimal for its final purpose, but successful results were obtained. The prototypes proved tough and were able to provide the desired motion. This proves that the proposed design method can be a useful tool for the design of improved CM’s. Furthermore, the variable sweep & AoA system could be used to boost the flight performance of SUAV’s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study, conducted in collaboration with Lawrence Technological University in Detroit, is to create, through the method of the Industrial Design Structure (IDeS), a new concept for a sport-coupe car, based on a restyling of a retro model (Ford Mustang 1967). To date, vintage models of cars always arouse great interest both for the history behind them and for the classic and elegant style. Designing a model of a vehicle that can combine the charm of retro style with the innovation and comfort of modern cars would allow to meet the needs and desires of a large segment of the market that today is forced to choose between past and future. Thanks to a well-conceived concept car an automaker company is able to express its future policy, to make a statement of intent as, such a prototype, ticks all the boxes, from glamour and visual wow-factor to technical intrigue and design fascination. IDeS is an approach that makes use of many engineering tools to realize a study developed on several steps that must be meticulously organized and timed. With a deep analysis of the trends dominating the automotive industry it is possible to identify a series of product requirements using quality function deployment (QFD). The considerations from this first evaluation led to the definition of the technical specifications via benchmarking (BM) and top-flop analysis (TFA). Then, the structured methodology of stylistic design engineering (SDE) is applied through six phases: (1) stylistic trends analysis; (2) sketches; (3) 2D CAD drawings; (4) 3D CAD models; (5) virtual prototyping; (6) solid stylistic model. Finally, Developing the IDeS method up to the final stages of Prototypes and Testing you get a product as close as possible to the ideal vehicle conceptualized in the initial analysis.