2 resultados para Decomposition methods
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.
Resumo:
Upgrade of hydrogen to valuable fuel is a central topic in modern research due to its high availability and low price. For the difficulties in hydrogen storage, different pathways are still under investigation. A promising way is in the liquid-phase chemical hydrogen storage materials, because they can lead to greener transformation processes with the on line development of hydrogen for fuel cells. The aim of my work was the optimization of catalysts for the decomposition of formic acid made by sol immobilisation method (a typical colloidal method). Formic acid was selected because of the following features: it is a versatile renewable reagent for green synthesis studies. The first aim of my research was the synthesis and optimisation of Pd nanoparticles by sol-immobilisation to achieve better catalytic performances and investigate the effect of particle size, oxidation state, role of stabiliser and nature of the support. Palladium was chosen because it is a well-known active metal for the catalytic decomposition of formic acid. Noble metal nanoparticles of palladium were immobilized on carbon charcoal and on titania. In the second part the catalytic performance of the “homemade” catalyst Pd/C to a commercial Pd/C and the effect of different monometallic and bimetallic systems (AuxPdy) in the catalytic formic acid decomposition was investigated. The training period for the production of this work was carried out at the University of Cardiff (Group of Dr. N. Dimitratos).