3 resultados para Decay time
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The main objective of this project is to experimentally demonstrate geometrical nonlinear phenomena due to large displacements during resonant vibration of composite materials and to explain the problem associated with fatigue prediction at resonant conditions. Three different composite blades to be tested were designed and manufactured, being their difference in the composite layup (i.e. unidirectional, cross-ply, and angle-ply layups). Manual envelope bagging technique is explained as applied to the actual manufacturing of the components; problems encountered and their solutions are detailed. Forced response tests of the first flexural, first torsional, and second flexural modes were performed by means of a uniquely contactless excitation system which induced vibration by using a pulsed airflow. Vibration intensity was acquired by means of Polytec LDV system. The first flexural mode is found to be completely linear irrespective of the vibration amplitude. The first torsional mode exhibits a general nonlinear softening behaviour which is interestingly coupled with a hardening behaviour for the unidirectional layup. The second flexural mode has a hardening nonlinear behaviour for either the unidirectional and angle-ply blade, whereas it is slightly softening for the cross-ply layup. By using the same equipment as that used for forced response analyses, free decay tests were performed at different airflow intensities. Discrete Fourier Trasform over the entire decay and Sliding DFT were computed so as to visualise the presence of nonlinear superharmonics in the decay signal and when they were damped out from the vibration over the decay time. Linear modes exhibit an exponential decay, while nonlinearities are associated with a dry-friction damping phenomenon which tends to increase with increasing amplitude. Damping ratio is derived from logarithmic decrement for the exponential branch of the decay.
Resumo:
Lo scopo di questa tesi è quello di misurare ed analizzare completamente le caratteristiche spaziali della distribuzione del suono nel Teatro all’Antica di Sabbioneta, patrimonio UNESCO. Dopo una breve storia sulla città e sul teatro, sono state svolte misurazioni acustiche in diversi punti di misura. Vengono analizzati e calcolati i principali parametri acustici quali tempo di riverbero, indice di robustezza, early decay time, indici di definizione e chiarezza, indici di intelligibilità, parametri spaziali. Viene poi utilizzato un array microfonico che permette di ottenere una completa informazione sulla distribuzione spaziale del suono in un teatro, mappando varie direzioni di arrivo delle riflessioni.
Resumo:
The LHCb experiment at the LHC, by exploiting the high production cross section for $c\overline{c}$ quark pairs, offers the possibility to investigate $\mathcal{CP}$ violation in the charm sector with a very high precision.\\ In this thesis a measurement of time-integrated \(\mathcal{CP}\) violation using $D^0\rightarrow~K^+K^-$ and $D^0\rightarrow \pi^+\pi^-$ decays at LHCb is presented. The measured quantity is the difference ($\Delta$) of \(\mathcal{CP}\) asymmetry ($\mathcal{A}_{\mathcal{CP}}$) between the decay rates of $D^0$ and $\overline{D}^0$ mesons into $K^+K^–$ and $\pi^+\pi^-$ pairs.\\ The analysis is performed on 2011 data, collected at \(\sqrt{s}=7\) TeV and corresponding to an integrated luminosity of 1 fb\(^{-1}\), and 2012 data, collected at \(\sqrt{s}=8\) TeV and corresponding to an integrated luminosity of 2 fb\(^{-1}\).\\ A complete study of systematic uncertainties is beyond the aim of this thesis. However the most important systematic of the previous analysis has been studied. We find that this systematic uncertainty was due to a statistical fluctuation and then we demonstrate that it is no longer necessary to take into account.\\ By combining the 2011 and 2012 results, the final statistical precision is 0.08\%. When this analysis will be completed and published, this will be the most precise single measurement in the search for $\mathcal{CP}$ violation in the charm sector.