14 resultados para Data-driven
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questo elaborato vengono analizzate differenti tecniche per la detection di jammer attivi e costanti in una comunicazione satellitare in uplink. Osservando un numero limitato di campioni ricevuti si vuole identificare la presenza di un jammer. A tal fine sono stati implementati i seguenti classificatori binari: support vector machine (SVM), multilayer perceptron (MLP), spectrum guarding e autoencoder. Questi algoritmi di apprendimento automatico dipendono dalle features che ricevono in ingresso, per questo motivo è stata posta particolare attenzione alla loro scelta. A tal fine, sono state confrontate le accuratezze ottenute dai detector addestrati utilizzando differenti tipologie di informazione come: i segnali grezzi nel tempo, le statistical features, le trasformate wavelet e lo spettro ciclico. I pattern prodotti dall’estrazione di queste features dai segnali satellitari possono avere dimensioni elevate, quindi, prima della detection, vengono utilizzati i seguenti algoritmi per la riduzione della dimensionalità: principal component analysis (PCA) e linear discriminant analysis (LDA). Lo scopo di tale processo non è quello di eliminare le features meno rilevanti, ma combinarle in modo da preservare al massimo l’informazione, evitando problemi di overfitting e underfitting. Le simulazioni numeriche effettuate hanno evidenziato come lo spettro ciclico sia in grado di fornire le features migliori per la detection producendo però pattern di dimensioni elevate, per questo motivo è stato necessario l’utilizzo di algoritmi di riduzione della dimensionalità. In particolare, l'algoritmo PCA è stato in grado di estrarre delle informazioni migliori rispetto a LDA, le cui accuratezze risentivano troppo del tipo di jammer utilizzato nella fase di addestramento. Infine, l’algoritmo che ha fornito le prestazioni migliori è stato il Multilayer Perceptron che ha richiesto tempi di addestramento contenuti e dei valori di accuratezza elevati.
Resumo:
La tesi presenta uno studio della libreria grafica per web D3, sviluppata in javascript, e ne presenta una catalogazione dei grafici implementati e reperibili sul web. Lo scopo è quello di valutare la libreria e studiarne i pregi e difetti per capire se sia opportuno utilizzarla nell'ambito di un progetto Europeo. Per fare questo vengono studiati i metodi di classificazione dei grafici presenti in letteratura e viene esposto e descritto lo stato dell'arte del data visualization. Viene poi descritto il metodo di classificazione proposto dal team di progettazione e catalogata la galleria di grafici presente sul sito della libreria D3. Infine viene presentato e studiato in maniera formale un algoritmo per selezionare un grafico in base alle esigenze dell'utente.
Resumo:
Il presente elaborato esplora l’attitudine delle organizzazioni nei confronti dei processi di business che le sostengono: dalla semi-assenza di struttura, all’organizzazione funzionale, fino all’avvento del Business Process Reengineering e del Business Process Management, nato come superamento dei limiti e delle problematiche del modello precedente. All’interno del ciclo di vita del BPM, trova spazio la metodologia del process mining, che permette un livello di analisi dei processi a partire dagli event data log, ossia dai dati di registrazione degli eventi, che fanno riferimento a tutte quelle attività supportate da un sistema informativo aziendale. Il process mining può essere visto come naturale ponte che collega le discipline del management basate sui processi (ma non data-driven) e i nuovi sviluppi della business intelligence, capaci di gestire e manipolare l’enorme mole di dati a disposizione delle aziende (ma che non sono process-driven). Nella tesi, i requisiti e le tecnologie che abilitano l’utilizzo della disciplina sono descritti, cosi come le tre tecniche che questa abilita: process discovery, conformance checking e process enhancement. Il process mining è stato utilizzato come strumento principale in un progetto di consulenza da HSPI S.p.A. per conto di un importante cliente italiano, fornitore di piattaforme e di soluzioni IT. Il progetto a cui ho preso parte, descritto all’interno dell’elaborato, ha come scopo quello di sostenere l’organizzazione nel suo piano di improvement delle prestazioni interne e ha permesso di verificare l’applicabilità e i limiti delle tecniche di process mining. Infine, nell’appendice finale, è presente un paper da me realizzato, che raccoglie tutte le applicazioni della disciplina in un contesto di business reale, traendo dati e informazioni da working papers, casi aziendali e da canali diretti. Per la sua validità e completezza, questo documento è stata pubblicato nel sito dell'IEEE Task Force on Process Mining.
Resumo:
Nel panorama aziendale odierno, risulta essere di fondamentale importanza la capacità, da parte di un’azienda o di una società di servizi, di orientare in modo programmatico la propria innovazione in modo tale da poter essere competitivi sul mercato. In molti casi, questo e significa investire una cospicua somma di denaro in progetti che andranno a migliorare aspetti essenziali del prodotto o del servizio e che avranno un importante impatto sulla trasformazione digitale dell’azienda. Lo studio che viene proposto riguarda in particolar modo due approcci che sono tipicamente in antitesi tra loro proprio per il fatto che si basano su due tipologie di dati differenti, i Big Data e i Thick Data. I due approcci sono rispettivamente il Data Science e il Design Thinking. Nel corso dei seguenti capitoli, dopo aver definito gli approcci di Design Thinking e Data Science, verrà definito il concetto di blending e la problematica che ruota attorno all’intersezione dei due metodi di innovazione. Per mettere in evidenza i diversi aspetti che riguardano la tematica, verranno riportati anche casi di aziende che hanno integrato i due approcci nei loro processi di innovazione, ottenendo importanti risultati. In particolar modo verrà riportato il lavoro di ricerca svolto dall’autore riguardo l'esame, la classificazione e l'analisi della letteratura esistente all'intersezione dell'innovazione guidata dai dati e dal pensiero progettuale. Infine viene riportato un caso aziendale che è stato condotto presso la realtà ospedaliero-sanitaria di Parma in cui, a fronte di una problematica relativa al rapporto tra clinici dell’ospedale e clinici del territorio, si è progettato un sistema innovativo attraverso l’utilizzo del Design Thinking. Inoltre, si cercherà di sviluppare un’analisi critica di tipo “what-if” al fine di elaborare un possibile scenario di integrazione di metodi o tecniche provenienti anche dal mondo del Data Science e applicarlo al caso studio in oggetto.
Resumo:
L'informatica e le sue tecnologie nella società moderna si riassumono spesso in un assioma fuorviante: essa, infatti, è comunemente legata al concetto che ciò che le tecnologie ci offrono può essere accessibile da tutti e sfruttato, all'interno della propria quotidianità, in modi più o meno semplici. Anche se quello appena descritto è un obiettivo fondamentale del mondo high-tech, occorre chiarire subito una questione: l'informatica non è semplicemente tutto ciò che le tecnologie ci offrono, perchè questo pensiero sommario fa presagire ad un'informatica "generalizzante"; l'informatica invece si divide tra molteplici ambiti, toccando diversi mondi inter-disciplinari. L'importanza di queste tecnologie nella società moderna deve spingerci a porre domande, riflessioni sul perchè l'informatica, in tutte le sue sfaccettature, negli ultimi decenni, ha portato una vera e propria rivoluzione nelle nostre vite, nelle nostre abitudini, e non di meno importanza, nel nostro contesto lavorativo e aziendale, e non ha alcuna intenzione (per fortuna) di fermare le proprie possibilità di sviluppo. In questo trattato ci occuperemo di definire una particolare tecnica moderna relativa a una parte di quel mondo complesso che viene definito come "Intelligenza Artificiale". L'intelligenza Artificiale (IA) è una scienza che si è sviluppata proprio con il progresso tecnologico e dei suoi potenti strumenti, che non sono solo informatici, ma soprattutto teorico-matematici (probabilistici) e anche inerenti l'ambito Elettronico-TLC (basti pensare alla Robotica): ecco l'interdisciplinarità. Concetto che è fondamentale per poi affrontare il nocciolo del percorso presentato nel secondo capitolo del documento proposto: i due approcci possibili, semantico e probabilistico, verso l'elaborazione del linguaggio naturale(NLP), branca fondamentale di IA. Per quanto darò un buono spazio nella tesi a come le tecniche di NLP semantiche e statistiche si siano sviluppate nel tempo, verrà prestata attenzione soprattutto ai concetti fondamentali di questi ambiti, perché, come già detto sopra, anche se è fondamentale farsi delle basi e conoscere l'evoluzione di queste tecnologie nel tempo, l'obiettivo è quello a un certo punto di staccarsi e studiare il livello tecnologico moderno inerenti a questo mondo, con uno sguardo anche al domani: in questo caso, la Sentiment Analysis (capitolo 3). Sentiment Analysis (SA) è una tecnica di NLP che si sta definendo proprio ai giorni nostri, tecnica che si è sviluppata soprattutto in relazione all'esplosione del fenomeno Social Network, che viviamo e "tocchiamo" costantemente. L'approfondimento centrale della tesi verterà sulla presentazione di alcuni esempi moderni e modelli di SA che riguardano entrambi gli approcci (statistico e semantico), con particolare attenzione a modelli di SA che sono stati proposti per Twitter in questi ultimi anni, valutando quali sono gli scenari che propone questa tecnica moderna, e a quali conseguenze contestuali (e non) potrebbe portare questa particolare tecnica.
Resumo:
The inferior alveolar nerve (IAN) lies within the mandibular canal, named inferior alveolar canal in literature. The detection of this nerve is important during maxillofacial surgeries or for creating dental implants. The poor quality of cone-beam computed tomography (CBCT) and computed tomography (CT) scans and/or bone gaps within the mandible increase the difficulty of this task, posing a challenge to human experts who are going to manually detect it and resulting in a time-consuming task.Therefore this thesis investigates two methods to automatically detect the IAN: a non-data driven technique and a deep-learning method. The latter tracks the IAN position at each frame leveraging detections obtained with the deep neural network CenterNet, fined-tuned for our task, and temporal and spatial information.
Resumo:
The amplitude of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) shows a large variability from trial to trial, although MEPs are evoked by the same repeated stimulus. A multitude of factors is believed to influence MEP amplitudes, such as cortical, spinal and motor excitability state. The goal of this work is to explore to which degree the variation in MEP amplitudes can be explained by the cortical state right before the stimulation. Specifically, we analyzed a dataset acquired on eleven healthy subjects comprising, for each subject, 840 single TMS pulses applied to the left M1 during acquisition of electroencephalography (EEG) and electromyography (EMG). An interpretable convolutional neural network, named SincEEGNet, was utilized to discriminate between low- and high-corticospinal excitability trials, defined according to the MEP amplitude, using in input the pre-TMS EEG. This data-driven approach enabled considering multiple brain locations and frequency bands without any a priori selection. Post-hoc interpretation techniques were adopted to enhance interpretation by identifying the more relevant EEG features for the classification. Results show that individualized classifiers successfully discriminated between low and high M1 excitability states in all participants. Outcomes of the interpretation methods suggest the importance of the electrodes situated over the TMS stimulation site, as well as the relevance of the temporal samples of the input EEG closer to the stimulation time. This novel decoding method allows causal investigation of the cortical excitability state, which may be relevant for personalizing and increasing the efficacy of therapeutic brain-state dependent brain stimulation (for example in patients affected by Parkinson’s disease).
Resumo:
In recent times, a significant research effort has been focused on how deformable linear objects (DLOs) can be manipulated for real world applications such as assembly of wiring harnesses for the automotive and aerospace sector. This represents an open topic because of the difficulties in modelling accurately the behaviour of these objects and simulate a task involving their manipulation, considering a variety of different scenarios. These problems have led to the development of data-driven techniques in which machine learning techniques are exploited to obtain reliable solutions. However, this approach makes the solution difficult to be extended, since the learning must be replicated almost from scratch as the scenario changes. It follows that some model-based methodology must be introduced to generalize the results and reduce the training effort accordingly. The objective of this thesis is to develop a solution for the DLOs manipulation to assemble a wiring harness for the automotive sector based on adaptation of a base trajectory set by means of reinforcement learning methods. The idea is to create a trajectory planning software capable of solving the proposed task, reducing where possible the learning time, which is done in real time, but at the same time presenting suitable performance and reliability. The solution has been implemented on a collaborative 7-DOFs Panda robot at the Laboratory of Automation and Robotics of the University of Bologna. Experimental results are reported showing how the robot is capable of optimizing the manipulation of the DLOs gaining experience along the task repetition, but showing at the same time a high success rate from the very beginning of the learning phase.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
Con la crescita in complessità delle infrastrutture IT e la pervasività degli scenari di Internet of Things (IoT) emerge il bisogno di nuovi modelli computazionali basati su entità autonome capaci di portare a termine obiettivi di alto livello interagendo tra loro grazie al supporto di infrastrutture come il Fog Computing, per la vicinanza alle sorgenti dei dati, e del Cloud Computing per offrire servizi analitici complessi di back-end in grado di fornire risultati per milioni di utenti. Questi nuovi scenarii portano a ripensare il modo in cui il software viene progettato e sviluppato in una prospettiva agile. Le attività dei team di sviluppatori (Dev) dovrebbero essere strettamente legate alle attività dei team che supportano il Cloud (Ops) secondo nuove metodologie oggi note come DevOps. Tuttavia, data la mancanza di astrazioni adeguata a livello di linguaggio di programmazione, gli sviluppatori IoT sono spesso indotti a seguire approcci di sviluppo bottom-up che spesso risulta non adeguato ad affrontare la compessità delle applicazione del settore e l'eterogeneità dei compomenti software che le formano. Poichè le applicazioni monolitiche del passato appaiono difficilmente scalabili e gestibili in un ambiente Cloud con molteplici utenti, molti ritengono necessaria l'adozione di un nuovo stile architetturale, in cui un'applicazione dovrebbe essere vista come una composizione di micro-servizi, ciascuno dedicato a uno specifica funzionalità applicativa e ciascuno sotto la responsabilità di un piccolo team di sviluppatori, dall'analisi del problema al deployment e al management. Poichè al momento non si è ancora giunti a una definizione univoca e condivisa dei microservices e di altri concetti che emergono da IoT e dal Cloud, nè tantomento alla definzione di linguaggi sepcializzati per questo settore, la definzione di metamodelli custom associati alla produzione automatica del software di raccordo con le infrastrutture potrebbe aiutare un team di sviluppo ad elevare il livello di astrazione, incapsulando in una software factory aziendale i dettagli implementativi. Grazie a sistemi di produzione del sofware basati sul Model Driven Software Development (MDSD), l'approccio top-down attualmente carente può essere recuperato, permettendo di focalizzare l'attenzione sulla business logic delle applicazioni. Nella tesi viene mostrato un esempio di questo possibile approccio, partendo dall'idea che un'applicazione IoT sia in primo luogo un sistema software distribuito in cui l'interazione tra componenti attivi (modellati come attori) gioca un ruolo fondamentale.
Resumo:
Underactuated cable-driven parallel robots (UACDPRs) shift a 6-degree-of-freedom end-effector (EE) with fewer than 6 cables. This thesis proposes a new automatic calibration technique that is applicable for under-actuated cable-driven parallel robots. The purpose of this work is to develop a method that uses free motion as an exciting trajectory for the acquisition of calibration data. The key point of this approach is to find a relationship between the unknown parameters to be calibrated (the lengths of the cables) and the parameters that could be measured by sensors (the swivel pulley angles measured by the encoders and roll-and-pitch angles measured by inclinometers on the platform). The equations involved are the geometrical-closure equations and the finite-difference velocity equations, solved using the least-squares algorithm. Simulations are performed on a parallel robot driven by 4 cables for validation. The final purpose of the calibration method is, still, the determination of the platform initial pose. As a consequence of underactuation, the EE is underconstrained and, for assigned cable lengths, the EE pose cannot be obtained by means of forward kinematics only. Hence, a direct-kinematics algorithm for a 4-cable UACDPR using redundant sensor measurements is proposed. The proposed method measures two orientation parameters of the EE besides cable lengths, in order to determine the other four pose variables, namely 3 position coordinates and one additional orientation parameter. Then, we study the performance of the direct-kinematics algorithm through the computation of the sensitivity of the direct-kinematics solution to measurement errors. Furthermore, position and orientation error upper limits are computed for bounded cable lengths errors resulting from the calibration procedure, and roll and pitch angles errors which are due to inclinometer inaccuracies.
Resumo:
In this work an Underactuated Cable-Driven Parallel Robot (UACDPR) that operates in the three dimensional Euclidean space is considered. The End-Effector has 6 degrees of freedom and is actuated by 4 cables, therefore from a mechanical point of view the robot is defined underconstrained. However, considering only three controlled pose variables, the degree of redundancy for the control theory can be considered one. The aim of this thesis is to design a feedback controller for a point-to-point motion that satisfies the transient requirements, and is capable of reducing oscillations that derive from the reduced number of constraints. A force control is chosen for the positioning of the End-Effector, and error with respect to the reference is computed through data measure of several sensors (load cells, encoders and inclinometers) such as cable lengths, tension and orientation of the platform. In order to express the relation between pose and cable tension, the inverse model is derived from the kinematic and dynamic model of the parallel robot. The intrinsic non-linear nature of UACDPRs systems introduces an additional level of complexity in the development of the controller, as a result the control law is composed by a partial feedback linearization, and damping injection to reduce orientation instability. The fourth cable allows to satisfy a further tension distribution constraint, ensuring positive tension during all the instants of motion. Then simulations with different initial conditions are presented in order to optimize control parameters, and lastly an experimental validation of the model is carried out, the results are analysed and limits of the presented approach are defined.
Resumo:
In the metal industry, and more specifically in the forging one, scrap material is a crucial issue and reducing it would be an important goal to reach. Not only would this help the companies to be more environmentally friendly and more sustainable, but it also would reduce the use of energy and lower costs. At the same time, the techniques for Industry 4.0 and the advancements in Artificial Intelligence (AI), especially in the field of Deep Reinforcement Learning (DRL), may have an important role in helping to achieve this objective. This document presents the thesis work, a contribution to the SmartForge project, that was performed during a semester abroad at Karlstad University (Sweden). This project aims at solving the aforementioned problem with a business case of the company Bharat Forge Kilsta, located in Karlskoga (Sweden). The thesis work includes the design and later development of an event-driven architecture with microservices, to support the processing of data coming from sensors set up in the company's industrial plant, and eventually the implementation of an algorithm with DRL techniques to control the electrical power to use in it.
Resumo:
I sistemi decentralizzati hanno permesso agli utenti di condividere informazioni senza la presenza di un intermediario centralizzato che possiede la sovranità sui dati scambiati, rischi di sicurezza e la possibilità di colli di bottiglia. Tuttavia, sono rari i sistemi pratici per il recupero delle informazioni salvate su di essi che non includano una componente centralizzata. In questo lavoro di tesi viene presentato lo sviluppo di un'applicazione il cui scopo è quello di consentire agli utenti di caricare immagini in un'architettura totalmente decentralizzata, grazie ai Decentralized File Storage e alla successiva ricerca e recupero di tali oggetti attraverso una Distributed Hash Table (DHT) in cui sono memorizzati i necessari Content IDentifiers (CID).\\ L'obiettivo principale è stato quello di trovare una migliore allocazione delle immagini all'interno del DHT attraverso l'uso dell'International Standard Content Code (ISCC), ovvero uno standard ISO che, attraverso funzioni hash content-driven, locality-sensitive e similarity-preserving, assegna i CID IPFS delle immagini ai nodi del DHT in modo efficiente, per ridurre il più possibile i salti tra i nodi e recuperare immagini coerenti con la query eseguita. Verranno, poi, analizzati i risultati ottenuti dall'allocazione dei CID delle immagini nei nodi mettendo a confronto ISCC e hash crittografico SHA-256, per verificare se ISCC rappresenti meglio la somiglianza tra le immagini allocando le immagini simili in nodi vicini tra loro.