14 resultados para Data mining and knowledge discovery
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L'innovazione delle tecnologie di sequenziamento negli ultimi anni ha reso possibile la catalogazione delle varianti genetiche nei campioni umani, portando nuove scoperte e comprensioni nella ricerca medica, farmaceutica, dell'evoluzione e negli studi sulla popolazione. La quantità di sequenze prodotta è molto cospicua, e per giungere all'identificazione delle varianti sono necessari diversi stadi di elaborazione delle informazioni genetiche in cui, ad ogni passo, vengono generate ulteriori informazioni. Insieme a questa immensa accumulazione di dati, è nata la necessità da parte della comunità scientifica di organizzare i dati in repository, dapprima solo per condividere i risultati delle ricerche, poi per permettere studi statistici direttamente sui dati genetici. Gli studi su larga scala coinvolgono quantità di dati nell'ordine dei petabyte, il cui mantenimento continua a rappresentare una sfida per le infrastrutture. Per la varietà e la quantità di dati prodotti, i database giocano un ruolo di primaria importanza in questa sfida. Modelli e organizzazione dei dati in questo campo possono fare la differenza non soltanto per la scalabilità, ma anche e soprattutto per la predisposizione al data mining. Infatti, la memorizzazione di questi dati in file con formati quasi-standard, la dimensione di questi file, e i requisiti computazionali richiesti, rendono difficile la scrittura di software di analisi efficienti e scoraggiano studi su larga scala e su dati eterogenei. Prima di progettare il database si è perciò studiata l’evoluzione, negli ultimi vent’anni, dei formati quasi-standard per i flat file biologici, contenenti metadati eterogenei e sequenze nucleotidiche vere e proprie, con record privi di relazioni strutturali. Recentemente questa evoluzione è culminata nell’utilizzo dello standard XML, ma i flat file delimitati continuano a essere gli standard più supportati da tools e piattaforme online. È seguita poi un’analisi dell’organizzazione interna dei dati per i database biologici pubblici. Queste basi di dati contengono geni, varianti genetiche, strutture proteiche, ontologie fenotipiche, relazioni tra malattie e geni, relazioni tra farmaci e geni. Tra i database pubblici studiati rientrano OMIM, Entrez, KEGG, UniProt, GO. L'obiettivo principale nello studio e nella modellazione del database genetico è stato quello di strutturare i dati in modo da integrare insieme i dati eterogenei prodotti e rendere computazionalmente possibili i processi di data mining. La scelta di tecnologia Hadoop/MapReduce risulta in questo caso particolarmente incisiva, per la scalabilità garantita e per l’efficienza nelle analisi statistiche più complesse e parallele, come quelle riguardanti le varianti alleliche multi-locus.
Resumo:
Much of the real-world dataset, including textual data, can be represented using graph structures. The use of graphs to represent textual data has many advantages, mainly related to maintaining a more significant amount of information, such as the relationships between words and their types. In recent years, many neural network architectures have been proposed to deal with tasks on graphs. Many of them consider only node features, ignoring or not giving the proper relevance to relationships between them. However, in many node classification tasks, they play a fundamental role. This thesis aims to analyze the main GNNs, evaluate their advantages and disadvantages, propose an innovative solution considered as an extension of GAT, and apply them to a case study in the biomedical field. We propose the reference GNNs, implemented with methodologies later analyzed, and then applied to a question answering system in the biomedical field as a replacement for the pre-existing GNN. We attempt to obtain better results by using models that can accept as input both node and edge features. As shown later, our proposed models can beat the original solution and define the state-of-the-art for the task under analysis.
Resumo:
Il trauma cranico é tra le piú importanti patologie traumatiche. Ogni anno 250 pazienti ogni 100.000 abitanti vengono ricoverati in Italia per un trauma cranico. La mortalitá é di circa 17 casi per 100.000 abitanti per anno. L’Italia si trova in piena “media” Europea considerando l’incidenza media in Europa di 232 casi per 100.000 abitanti ed una mortalitá di 15 casi per 100.000 abitanti. Degli studi hanno indicato come una terapia anticoagulante é uno dei principali fattori di rischio di evolutiviá di una lesione emorragica. Al contrario della terapia anticoagulante, il rischio emorragico correlato ad una terapia antiaggregante é a tutt’oggi ancora in fase di verifica. Il problema risulta rilevante in particolare nella popolazione occidentale in quanto l’impiego degli antiaggreganti é progressivamente sempre piú diffuso. Questo per la politica di prevenzione sostenuta dalle linee guida nazionali e internazionali in termini di prevenzione del rischio cardiovascolare, in particolare nelle fasce di popolazione di etá piú avanzata. Per la prima volta, é stato dimostrato all’ospedale di Forlí[1], su una casistica sufficientemente ampia, che la terapia cronica con antiaggreganti, per la preven- zione del rischio cardiovascolare, puó rivelarsi un significativo fattore di rischio di complicanze emorragiche in un soggetto con trauma cranico, anche di grado lieve. L’ospedale per approfondire e convalidare i risultati della ricerca ha condotto, nell’anno 2009, una nuova indagine. La nuova indagine ha coinvolto oltre l’ospedale di Forlí altri trentuno centri ospedalieri italiani. Questo lavoro di ricerca vuole, insieme ai ricercatori dell’ospedale di Forlí, verificare: “se una terapia con antiaggreganti influenzi l’evolutivitá, in senso peggiorativo, di una lesione emorragica conseguente a trauma cranico lieve - moderato - severo in un soggetto adulto”, grazie ai dati raccolti dai centri ospedalieri nel 2009. Il documento é strutturato in due parti. La prima parte piú teorica, vuole fissare i concetti chiave riguardanti il contesto della ricerca e la metodologia usata per analizzare i dati. Mentre, la seconda parte piú pratica, vuole illustrare il lavoro fatto per rispondere al quesito della ricerca. La prima parte é composta da due capitoli, che sono: • Il capitolo 1: dove sono descritti i seguenti concetti: cos’é un trauma cra- nico, cos’é un farmaco di tipo anticoagulante e cos’é un farmaco di tipo antiaggregante; • Il capitolo 2: dove é descritto cos’é il Data Mining e quali tecniche sono state usate per analizzare i dati. La seconda parte é composta da quattro capitoli, che sono: • Il capitolo 3: dove sono state descritte: la struttura dei dati raccolti dai trentadue centri ospedalieri, la fase di pre-processing e trasformazione dei dati. Inoltre in questo capitolo sono descritti anche gli strumenti utilizzati per analizzare i dati; • Il capitolo 4: dove é stato descritto come é stata eseguita l’analisi esplorativa dei dati. • Il capitolo 5: dove sono descritte le analisi svolte sui dati e soprattutto i risultati che le analisi, grazie alle tecniche di Data Mining, hanno prodotto per rispondere al quesito della ricerca; • Il capitolo 6: dove sono descritte le conclusioni della ricerca. Per una maggiore comprensione del lavoro sono state aggiunte due appendici. La prima tratta del software per data mining Weka, utilizzato per effettuare le analisi. Mentre, la seconda tratta dell’implementazione dei metodi per la creazione degli alberi decisionali.
Resumo:
Il citofluorimetro è uno strumento impiegato in biologia genetica per analizzare dei campioni cellulari: esso, analizza individualmente le cellule contenute in un campione ed estrae, per ciascuna cellula, una serie di proprietà fisiche, feature, che la descrivono. L’obiettivo di questo lavoro è mettere a punto una metodologia integrata che utilizzi tali informazioni modellando, automatizzando ed estendendo alcune procedure che vengono eseguite oggi manualmente dagli esperti del dominio nell’analisi di alcuni parametri dell’eiaculato. Questo richiede lo sviluppo di tecniche biochimiche per la marcatura delle cellule e tecniche informatiche per analizzare il dato. Il primo passo prevede la realizzazione di un classificatore che, sulla base delle feature delle cellule, classifichi e quindi consenta di isolare le cellule di interesse per un particolare esame. Il secondo prevede l'analisi delle cellule di interesse, estraendo delle feature aggregate che possono essere indicatrici di certe patologie. Il requisito è la generazione di un report esplicativo che illustri, nella maniera più opportuna, le conclusioni raggiunte e che possa fungere da sistema di supporto alle decisioni del medico/biologo.
Resumo:
The objective of this dissertation is to study the structure and behavior of the Atmospheric Boundary Layer (ABL) in stable conditions. This type of boundary layer is not completely well understood yet, although it is very important for many practical uses, from forecast modeling to atmospheric dispersion of pollutants. We analyzed data from the SABLES98 experiment (Stable Atmospheric Boundary Layer Experiment in Spain, 1998), and compared the behaviour of this data using Monin-Obukhov's similarity functions for wind speed and potential temperature. Analyzing the vertical profiles of various variables, in particular the thermal and momentum fluxes, we identified two main contrasting structures describing two different states of the SBL, a traditional and an upside-down boundary layer. We were able to determine the main features of these two states of the boundary layer in terms of vertical profiles of potential temperature and wind speed, turbulent kinetic energy and fluxes, studying the time series and vertical structure of the atmosphere for two separate nights in the dataset, taken as case studies. We also developed an original classification of the SBL, in order to separate the influence of mesoscale phenomena from turbulent behavior, using as parameters the wind speed and the gradient Richardson number. We then compared these two formulations, using the SABLES98 dataset, verifying their validity for different variables (wind speed and potential temperature, and their difference, at different heights) and with different stability parameters (zita or Rg). Despite these two classifications having completely different physical origins, we were able to find some common behavior, in particular under weak stability conditions.
Resumo:
VIRTIS, a bordo di Venus Express, è uno spettrometro in grado di operare da 0.25 a 5 µm. Nel periodo 2006-2011 ha ricavato un'enorme mole di dati ma a tutt'oggi le osservazioni al lembo sono poco utilizzate per lo studio delle nubi e delle hazes, specialmente di notte. Gli spettri al lembo a quote mesosferiche sono dominati dalla radianza proveniente dalle nubi e scatterata in direzione dello strumento dalle hazes. L'interpretazione degli spettri al lembo non può quindi prescindere dalla caratterizzazione dell'intera colonna atmosferica. L'obiettivo della tesi è di effettuare un’analisi statistica sulle osservazioni al nadir e proporre una metodologia per ricavare una caratterizzazione delle hazes combinando osservazioni al nadir e al lembo. La caratterizzazione delle nubi è avvenuta su un campione di oltre 3700 osservazioni al nadir. È stato creato un ampio dataset di spettri sintetici modificando, in un modello iniziale, vari parametri di nube quali composizione chimica, numero e dimensione delle particelle. Un processo di fit è stato applicato alle osservazioni per stabilire quale modello potesse descrivere gli spettri osservati. Si è poi effettuata una analisi statistica sui risultati del campione. Si è ricavata una concentrazione di acido solforico molto elevata nelle nubi basse, pari al 96% in massa, che si discosta dal valore generalmente utilizzato del 75%. Si sono poi integrati i risultati al nadir con uno studio mirato su poche osservazioni al lembo, selezionate in modo da intercettare nel punto di tangenza la colonna atmosferica osservata al nadir, per ricavare informazioni sulle hazes. I risultati di un modello Monte Carlo indicano che il numero e le dimensioni delle particelle previste dal modello base devono essere ridotte in maniera significativa. In particolare si osserva un abbassamento della quota massima delle hazes rispetto ad osservazioni diurne.
Resumo:
Coniato negli anni‘90 il termine indica lo scavare tra i dati con chiara metafora del gold mining, ossia la ricerca dell’oro. Oggi è sinonimo di ricerca di informazione in vasti database, ed enfatizza il processo di analisi all’interno dei dati in alternativa all’uso di specifici metodi di analisi. Il data mining è una serie di metodi e tecniche usate per esplorare e analizzare grandi set di dati, in modo da trovare alcune regole sconosciute o nascoste, associazioni o tendenze.
Resumo:
Analisi e applicazione dei processi di data mining al flusso informativo di sistemi real-time. Implementazione e analisi di un algoritmo autoadattivo per la ricerca di frequent patterns su macchine automatiche.
Resumo:
La tesi da me svolta durante questi ultimi sei mesi è stata sviluppata presso i laboratori di ricerca di IMA S.p.a.. IMA (Industria Macchine Automatiche) è una azienda italiana che naque nel 1961 a Bologna ed oggi riveste il ruolo di leader mondiale nella produzione di macchine automatiche per il packaging di medicinali. Vorrei subito mettere in luce che in tale contesto applicativo l’utilizzo di algoritmi di data-mining risulta essere ostico a causa dei due ambienti in cui mi trovo. Il primo è quello delle macchine automatiche che operano con sistemi in tempo reale dato che non presentano a pieno le risorse di cui necessitano tali algoritmi. Il secondo è relativo alla produzione di farmaci in quanto vige una normativa internazionale molto restrittiva che impone il tracciamento di tutti gli eventi trascorsi durante l’impacchettamento ma che non permette la visione al mondo esterno di questi dati sensibili. Emerge immediatamente l’interesse nell’utilizzo di tali informazioni che potrebbero far affiorare degli eventi riconducibili a un problema della macchina o a un qualche tipo di errore al fine di migliorare l’efficacia e l’efficienza dei prodotti IMA. Lo sforzo maggiore per riuscire ad ideare una strategia applicativa è stata nella comprensione ed interpretazione dei messaggi relativi agli aspetti software. Essendo i dati molti, chiusi, e le macchine con scarse risorse per poter applicare a dovere gli algoritmi di data mining ho provveduto ad adottare diversi approcci in diversi contesti applicativi: • Sistema di identificazione automatica di errore al fine di aumentare di diminuire i tempi di correzione di essi. • Modifica di un algoritmo di letteratura per la caratterizzazione della macchina. La trattazione è così strutturata: • Capitolo 1: descrive la macchina automatica IMA Adapta della quale ci sono stati forniti i vari file di log. Essendo lei l’oggetto di analisi per questo lavoro verranno anche riportati quali sono i flussi di informazioni che essa genera. • Capitolo 2: verranno riportati degli screenshoot dei dati in mio possesso al fine di, tramite un’analisi esplorativa, interpretarli e produrre una formulazione di idee/proposte applicabili agli algoritmi di Machine Learning noti in letteratura. • Capitolo 3 (identificazione di errore): in questo capitolo vengono riportati i contesti applicativi da me progettati al fine di implementare una infrastruttura che possa soddisfare il requisito, titolo di questo capitolo. • Capitolo 4 (caratterizzazione della macchina): definirò l’algoritmo utilizzato, FP-Growth, e mostrerò le modifiche effettuate al fine di poterlo impiegare all’interno di macchine automatiche rispettando i limiti stringenti di: tempo di cpu, memoria, operazioni di I/O e soprattutto la non possibilità di aver a disposizione l’intero dataset ma solamente delle sottoporzioni. Inoltre verranno generati dei DataSet per il testing di dell’algoritmo FP-Growth modificato.
Resumo:
Mobile devices are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. To this end, mobile cloud computing (MCC) has been proposed to address the limited computation power, memory, storage, and energy of such devices. An important challenge in MCC is to guarantee seamless discovery of services. To this end, this thesis proposes an architecture that provides user-transparent and low-latency service discovery, as well as automated service selection. Experimental results on a real cloud computing testbed demonstrated that the proposed work outperforms state of-the-art approaches by achieving extremely low discovery delay.