2 resultados para DSI
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the recent decade, the request for structural health monitoring expertise increased exponentially in the United States. The aging issues that most of the transportation structures are experiencing can put in serious jeopardy the economic system of a region as well as of a country. At the same time, the monitoring of structures is a central topic of discussion in Europe, where the preservation of historical buildings has been addressed over the last four centuries. More recently, various concerns arose about security performance of civil structures after tragic events such the 9/11 or the 2011 Japan earthquake: engineers looks for a design able to resist exceptional loadings due to earthquakes, hurricanes and terrorist attacks. After events of such a kind, the assessment of the remaining life of the structure is at least as important as the initial performance design. Consequently, it appears very clear that the introduction of reliable and accessible damage assessment techniques is crucial for the localization of issues and for a correct and immediate rehabilitation. The System Identification is a branch of the more general Control Theory. In Civil Engineering, this field addresses the techniques needed to find mechanical characteristics as the stiffness or the mass starting from the signals captured by sensors. The objective of the Dynamic Structural Identification (DSI) is to define, starting from experimental measurements, the modal fundamental parameters of a generic structure in order to characterize, via a mathematical model, the dynamic behavior. The knowledge of these parameters is helpful in the Model Updating procedure, that permits to define corrected theoretical models through experimental validation. The main aim of this technique is to minimize the differences between the theoretical model results and in situ measurements of dynamic data. Therefore, the new model becomes a very effective control practice when it comes to rehabilitation of structures or damage assessment. The instrumentation of a whole structure is an unfeasible procedure sometimes because of the high cost involved or, sometimes, because it’s not possible to physically reach each point of the structure. Therefore, numerous scholars have been trying to address this problem. In general two are the main involved methods. Since the limited number of sensors, in a first case, it’s possible to gather time histories only for some locations, then to move the instruments to another location and replay the procedure. Otherwise, if the number of sensors is enough and the structure does not present a complicate geometry, it’s usually sufficient to detect only the principal first modes. This two problems are well presented in the works of Balsamo [1] for the application to a simple system and Jun [2] for the analysis of system with a limited number of sensors. Once the system identification has been carried, it is possible to access the actual system characteristics. A frequent practice is to create an updated FEM model and assess whether the structure fulfills or not the requested functions. Once again the objective of this work is to present a general methodology to analyze big structure using a limited number of instrumentation and at the same time, obtaining the most information about an identified structure without recalling methodologies of difficult interpretation. A general framework of the state space identification procedure via OKID/ERA algorithm is developed and implemented in Matlab. Then, some simple examples are proposed to highlight the principal characteristics and advantage of this methodology. A new algebraic manipulation for a prolific use of substructuring results is developed and implemented.
Resumo:
L’utilizzo di informazioni di profondità è oggi di fondamentale utilità per molteplici settori applicativi come la robotica, la guida autonoma o assistita, la realtà aumentata e il monitoraggio ambientale. I sensori di profondità disponibili possono essere divisi in attivi e passivi, dove i sensori passivi ricavano le informazioni di profondità dall'ambiente senza emettere segnali, bensì utilizzando i segnali provenienti dall'ambiente (e.g., luce solare). Nei sensori depth passivi stereo è richiesto un algoritmo per elaborare le immagini delle due camere: la tecnica di stereo matching viene utilizzata appunto per stimare la profondità di una scena. Di recente la ricerca si è occupata anche della sinergia con sensori attivi al fine di migliorare la stima della depth ottenuta da un sensore stereo: si utilizzano i punti affidabili generati dal sensore attivo per guidare l'algoritmo di stereo matching verso la soluzione corretta. In questa tesi si è deciso di affrontare questa tematica da un punto di vista nuovo, utilizzando un sistema di proiezione virtuale di punti corrispondenti in immagini stereo: i pixel delle immagini vengono alterati per guidare l'algoritmo ottimizzando i costi. Un altro vantaggio della strategia proposta è la possibilità di iterare il processo, andando a cambiare il pattern in ogni passo: aggregando i passi in un unico risultato, è possibile migliorare il risultato finale. I punti affidabili sono ottenuti mediante sensori attivi (e.g. LiDAR, ToF), oppure direttamente dalle immagini, stimando la confidenza delle mappe prodotte dal medesimo sistema stereo: la confidenza permette di classificare la bontà di un punto fornito dall'algoritmo di matching. Nel corso della tesi sono stati utilizzati sensori attivi per verificare l'efficacia della proiezione virtuale, ma sono state anche effettuate analisi sulle misure di confidenza: lo scopo è verificare se le misure di confidenza possono rimpiazzare o assistere i sensori attivi.