5 resultados para DNP3 protocol

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locator ID Separation Protocolo Tesi di Laurea in Reti di calcolatori

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The full blood cell (FBC) count is the most common indicator of diseases. At present hematology analyzers are used for the blood cell characterization, but, recently, there has been interest in using techniques that take advantage of microscale devices and intrinsic properties of cells for increased automation and decreased cost. Microfluidic technologies offer solutions to handling and processing small volumes of blood (2-50 uL taken by finger prick) for point-of-care(PoC) applications. Several PoC blood analyzers are in use and may have applications in the fields of telemedicine, out patient monitoring and medical care in resource limited settings. They have the advantage to be easy to move and much cheaper than traditional analyzers, which require bulky instruments and consume large amount of reagents. The development of miniaturized point-of-care diagnostic tests may be enabled by chip-based technologies for cell separation and sorting. Many current diagnostic tests depend on fractionated blood components: plasma, red blood cells (RBCs), white blood cells (WBCs), and platelets. Specifically, white blood cell differentiation and counting provide valuable information for diagnostic purposes. For example, a low number of WBCs, called leukopenia, may be an indicator of bone marrow deficiency or failure, collagen- vascular diseases, disease of the liver or spleen. The leukocytosis, a high number of WBCs, may be due to anemia, infectious diseases, leukemia or tissue damage. In the laboratory of hybrid biodevices, at the University of Southampton,it was developed a functioning micro impedance cytometer technology for WBC differentiation and counting. It is capable to classify cells and particles on the base of their dielectric properties, in addition to their size, without the need of labeling, in a flow format similar to that of a traditional flow cytometer. It was demonstrated that the micro impedance cytometer system can detect and differentiate monocytes, neutrophils and lymphocytes, which are the three major human leukocyte populations. The simplicity and portability of the microfluidic impedance chip offer a range of potential applications in cell analysis including point-of-care diagnostic systems. The microfluidic device has been integrated into a sample preparation cartridge that semi-automatically performs erythrocyte lysis before leukocyte analysis. Generally erythrocytes are manually lysed according to a specific chemical lysis protocol, but this process has been automated in the cartridge. In this research work the chemical lysis protocol, defined in the patent US 5155044 A, was optimized in order to improve white blood cell differentiation and count performed by the integrated cartridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Spectroscopy (MRS) is an advanced clinical and research application which guarantees a specific biochemical and metabolic characterization of tissues by the detection and quantification of key metabolites for diagnosis and disease staging. The "Associazione Italiana di Fisica Medica (AIFM)" has promoted the activity of the "Interconfronto di spettroscopia in RM" working group. The purpose of the study is to compare and analyze results obtained by perfoming MRS on scanners of different manufacturing in order to compile a robust protocol for spectroscopic examinations in clinical routines. This thesis takes part into this project by using the GE Signa HDxt 1.5 T at the Pavillion no. 11 of the S.Orsola-Malpighi hospital in Bologna. The spectral analyses have been performed with the jMRUI package, which includes a wide range of preprocessing and quantification algorithms for signal analysis in the time domain. After the quality assurance on the scanner with standard and innovative methods, both spectra with and without suppression of the water peak have been acquired on the GE test phantom. The comparison of the ratios of the metabolite amplitudes over Creatine computed by the workstation software, which works on the frequencies, and jMRUI shows good agreement, suggesting that quantifications in both domains may lead to consistent results. The characterization of an in-house phantom provided by the working group has achieved its goal of assessing the solution content and the metabolite concentrations with good accuracy. The goodness of the experimental procedure and data analysis has been demonstrated by the correct estimation of the T2 of water, the observed biexponential relaxation curve of Creatine and the correct TE value at which the modulation by J coupling causes the Lactate doublet to be inverted in the spectrum. The work of this thesis has demonstrated that it is possible to perform measurements and establish protocols for data analysis, based on the physical principles of NMR, which are able to provide robust values for the spectral parameters of clinical use.