3 resultados para DIOL EPOXIDE
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this work, two different protocols for the synthesis of Nb2O5-SiO2 with a sol-gel route in which supercritical carbon dioxide was used as solvent have been developed. The tailored design of the reactor allowed the reactants to come into contact only when supercritical CO2 is present, and the high-throughput experimentation scCO2 unit allowed the screening of synthetic parameters, that led to a Nb2O5 incorporation into the silica matrix of 2.5 wt%. N2-physisorption revealed high surface areas and the presence of meso- and micropores. XRD allowed to demonstrate the amorphous character of these materials. SEM-EDX proved the excellent dispersion of Nb2O5 into the silica matrix. These materials were tested in the epoxidation of cyclooctene with hydrogen peroxide, which is considered an environmentally friendly oxidant. The catalysts were virtually inactive in an organic, polar, aprotic solvent (1,4-dioxane). However, the most active scCO2 Nb2O5-SiO2 catalyst achieved a cyclooctene conversion of 44% with a selectivity of 88% towards the epoxide when tested in ethanol. Catalytic tests on cyclohexene revealed the presence of the epoxide, which is remarkable, considering that this substrate is easily oxidised to the diol. The behaviour in protic and aprotic solvents is compared to that of TS-1.
Resumo:
Ionic Liquids (ILs) constituted by organic cations and inorganic anions are particular salts with a melting point below 100°C. Their physical properties such as melting point and solubility can be tuned by altering the combination of their anions and cations. In the last years the interest in ILs has been centered mostly on their possible use as “green” alternatives to the traditional volatile organic solvents (VOCs) thanks to their low vapour pressure and the efficient ability in catalyst immobilization. In this regard, the subject of the present thesis is the study of the oxodiperoxomolybdenum catalyzed epoxidation of olefins in ILs media with hydrogen peroxide as the oxidant. In particular N-functionalized imidazolium salts, such as 1-(2-t-Butoxycarbonylamino-ethyl)-3-methylimidazolium (1), were synthesized with different counterions [I]-, [PF6]-, [NO3]-, [NTf2]- and [ClO4]– and tested as reaction solvents. The counterion exchange with [Cl]-, [NTf2]- and [NO3]- was also performed in unfuctionalized imidazolium salts such as 3-butyl-1-methylimidazol-3-ium (3). All the prepared ILs were tested in catalytic epoxidation of olefins exploiting oxodiperoxomolybdenum complexes [MoO(O2)2(C4H6N2)2] (4) and [MoO(O2)2(C5H8N2)2] (5) as catalysts. The IL 3[NTf2] and the catalysts 5 give rise to the best results leading to the selective formation of the epoxide of cis-cyclooctene avoiding hydrolysis side reaction. A preliminary study on the synthesis of novel NHC oxodiperoxomolybdenum complexes starting from imidazolium salts was also developed.
Resumo:
3,5-dimethyl-4-nitroisoxazole derivatives are useful synthetic intermediates as the isoxazole nucleus chemically behaves as an ester, but establish better-defined interactions with chiral catalysts and lability of its N-O aromatic bond can unveil other groups such as 1,3-dicarbonyl compounds or carboxylic acids. In the present work, these features are employed in a 3,5-dimethyl-4-nitroisoxazole based synthesis of the γ-amino acid pregabalin, a medication for the treatment of epilepsy and neuropatic pain, in which this moiety is fundamental for the enantioselective formation of a chiral center by interaction with doubly-quaternized cinchona phase-transfer catalysts, whose ability of asymmetric induction will be investigated. Influence of this group in cinchona-derivatives catalysed stereoselective addition and Darzens reaction of a mono-chlorinated 3,5-dimethyl-4-nitroisoxazole and benzaldehyde will also be investigated.