5 resultados para DFT studies

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the discoveries of Pasteur, stereochemistry has played an increasingly important role in the chemical sciences. In particular conformational study of molecules with axial chirality is object of intense research. Through Dynamic-NMR analysis and simulation of the spectra, the energy rotational barriers value of conformers are obtained. When this barrier is high sufficiently, atropisomeric stable compounds can be reached. They can be separated and used in stereo-synthesis and in packing processes. 3,4-bis-aryl maleimides, in which the aromatic groups are sufficiently bulky, generate atropisomeric stable configurations, that can be isolated at room temperature. The assignment of absolute configurations is performed through ECD analysis and comparison with computational calculations. The biological activities of maleimide derivatives widen the field of atropisomers application also in biological systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis project presents a work based on the study of a particular class of amino-boranes, called bis-phenothiazine-aryl-boranes. The peculiarity of these compounds is the N-B-N chemical moiety and their complex conformational behaviour, due to the combination of steric hindrance and conjugation of the B-N bond. Our work is focused on two main products with different symmetry: bis-phenothiazine-2-methylnaphthyl-borane (2b) and bis-phenothiazine-anthracenyl-borane (2c). We firstly focused our attention on an effective way of synthesis, by optimizing both reaction conditions and purification. The products and co-products of interest were then characterized with NMR, mass spectroscopy and X-Ray diffraction on single crystals. The products were eventually analysed through conformational studies, by experimental techniques, such as dynamic NMR and EXSY, and by a theorical approach with DFT calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topic of this thesis is the DFT computational study of the mechanisms for the synthesis of chiral 3,4,5-trisubstituted piperidines and 2,6-disubstituted morpholines. The goal of this synthesis is to use, the same substrate containing two electrophilic sites: an α,β-unsaturated ester and a ketone, which evolve according to the nucleophile used (cyanide, phenyl sulfide) through different addition and cyclization reactions. A quaternary ammonium salt is used as a catalyst for these reactions, which leads to a diastereoisomeric excess both for the reactions of morpholine and piperidine products. Studies in silico of the pathways of these reactions explain the chemoselection and diasteroselection deriving from the two nucleophiles used. In this case of piperidine products, it was also possible to validate the hypothesis of a concerted nucleophilic addition mechanism on the α,β-unsaturated site and cyclization due to an intramolecular Michael addition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During this project we have synthetized different compounds belonging to the class of amino-boranes for the study of bis-aryl-B=N system. We have decided to keep unchanged the aryl components and change only the amine to observe the effect of that on the B=N bond. The used amines are modified carbazoles with functional groups chosen to amplify or disempower the steric and the conjugation effect. We have found that the evaluation of steric barrier was possible studying the gearing aryls rotation around the C-B bonds, while the conjugation barrier is instead given by the energy needed to break the formal double bond B=N and allow the amine rotation. The work started with a proposed synthesis, improved for every reaction, then the products are characterized by NMR, fluorometric spectroscopy, mass spectrometry and X-Ray diffraction on single crystal. The following study on rotational energy barrier was possible theoretically through DFT calculation and experimentally with techniques like Dynamic NMR and EXSY. The fluorometric analysis was done for the study of the solvatochromic propriety of the products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glucaric acid (GLA) has been identified as a “top value-added chemical from biomass” that can be employed for many uses; for instance, it could be a precursor of adipic acid, a monomer of Nylon-6,6. GLA can be synthetized by the oxidation of glucose (GLU), passing through the intermediate gluconic acid (GLO). In recent years, a new process has been sought to obtain GLA in an economic and environmental sustainable way, in order to replace the current use of HNO3 as a stoichiometric oxidant, or electrocatalysis and biochemical synthesis, which show several disadvantages. Thereby, this work is focused on the study of catalysts based on gold nanoparticles supported on activated carbon for the oxidation reaction of GLU to GLA using O2 as an oxidant agent and NaOH as base. The sol-immobilization method leads us to obtain small and well dispersed nanoparticles, characterized by UV-Vis, XRD and TEM techniques. Repeating the reaction on different batches of catalyst, both the synthesis and the reaction were confirmed to be reproducible. The effect of the reaction time feeding GLO as reagent was studied: the results show that the conversion of GLO increases as the reaction time increases; however, the yields of GLA and others increase up to 1 hour, and then they remain constant. In order to obtain information on the catalytic mechanism at the atomistic level, a computational study based on density functional theory and atomistic modeling of the gold nano-catalyst were performed. Highly symmetric (icosahedral and cubo-octahedral) and distorted Au55 nanoparticles have been optimized along with Au(111) and Au(100) surfaces. Distorted structures were found to be more stable than symmetrical ones due to relativistic effects. On these various models the adsorptions of various species involved in the catalysis have been studied, including OH- species, GLU and GLO. The study carried out aims to provide a method for approaching to the study of nanoparticellary catalytic systems.